TAJC226010 [KYOCERA AVX]

Surface Mount Tantalum Capacitors;
TAJC226010
型号: TAJC226010
厂家: KYOCERA AVX    KYOCERA AVX
描述:

Surface Mount Tantalum Capacitors

文件: 总51页 (文件大小:895K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
A KYOCERA GROUP COMPANY  
AVX  
Surface Mount  
Tantalum Capacitors  
Index  
Introduction  
2
4
TAJ – Standard Series  
TAJ – Low Profile Series  
TPS – High Performance, Low ESR  
TACmicrochip  
8
10  
14  
18  
22  
25  
28  
42  
46  
48  
49  
TAZ – Specialist Series  
CWR09 MIL-C-55365/4  
CWR11 MIL-C-55365/8  
Technical Summary & Application Guidelines  
Packaging  
Questions & Answers  
Technical Publications  
Fax Back Form  
1
Introduction  
AVX Tantalum  
AVX Paignton is the Divisional Headquarters for the Tantalum  
division which has manufacturing locations in Paignton in the  
UK, Biddeford in Maine, USA, Juarez in Mexico, Lanskroun  
in the Czech Republic and El Salvador.  
an element extracted from ores found alongside tin and  
niobium deposits; the major sources of supply are Canada,  
Brazil and Australasia.  
So for high volume tantalum capacitors with leading edge  
The Division takes its name from the raw material used to  
make its main products, Tantalum Capacitors. Tantalum is  
technology call us first - AVX your global partner.  
TECHNOLOGY TRENDS  
The amount of capacitance possible in a tantalum capacitor  
is directly related to the type of tantalum powder used to  
manufacture the anode.  
Tantalum Powder CV/gm  
80  
70  
60  
50  
The graph following shows how the CV/g has steadily  
increased over time, thus allowing the production of larger  
and larger capacitances with the same physical volume.  
CV/g is the measure used to define the volumetric efficiency  
of a powder, a high CV/g means a higher capacitance from  
the same volume.  
40  
30  
20  
10  
0
These improvements in the powder have been achieved  
through close development with the material suppliers.  
1975  
1980  
1985  
Year  
1990  
1995  
2000  
AVX Tantalum is committed to driving the available technology  
forwards as is clearly identified by the new TACmicrochip  
technology and the standard codes under development.  
If you have any specific requirements, please contact your  
local AVX sales office for details on how AVX Tantalum can  
assist you in addressing your future requirements.  
WORKING WITH THE CUSTOMER  
- ONE STOP SHOPPING  
In line with our desire to become the number one supplier in  
the world for passive and interconnection components, AVX  
constantly feels the need to look forward and innovate.  
tions are hopefully always appropriate to your commercial  
need, but as higher levels of technical expertise are required,  
access directly to the appropriate department is seamless  
and transparent.  
It is not good enough to market the best products, the  
customer must have access to a service system which suits  
their needs and benefits their business.  
Total quality starts and finishes with our customer service,  
and where cost and quality are perceived as given quantities  
the AVX service invariably has us selected as the preferred  
supplier.  
The AVX ‘one stop shopping’ concept is already beneficial  
in meeting the needs of major OEMs while worldwide  
partnerships with only the premier division of distributors aids  
the smaller user.  
Facilities are equipped with instant worldwide computer and  
telecommunication links connected to every sales and pro-  
duction site worldwide. That ensures that our customers  
delivery requirements are consistently met wherever in the  
world they may be.  
Helping to market the breadth and depth of our electronic  
component line card and support our customers are a  
dedicated team of commercial sales people, applications  
engineers and product marketing managers. Their qualifica-  
2
Introduction  
AVX Tantalum  
APPLICATIONS  
2-16 Volt  
Low ESR  
50 Volt @ 85°C  
33 Volt @ 125°C  
2-35 Volt  
Low ESR  
Low Profile Case  
0603 available  
Automotive range due  
second half 1998  
Low Profile Case  
0603 available  
High Reliability  
Temperature Stability  
QS9000 approved  
Low Failure Rate  
High Volumetric Efficiency  
Temperature Stability  
Stable over Time  
Low Failure Rate  
High Volumetric Efficiency  
Temperature Stability  
Stable over Time  
QUALITY STATEMENTS  
AVXs focus is CUSTOMER satisfaction - customer satisfac-  
tion in the broadest sense: product quality, technical support,  
product availability and all at a competitive price.  
The objectives and guidelines listed above shall be achieved  
by the following codes of practice:  
1. Continual objective evaluation of customer needs and  
expectations for the future and the leverage of all AVX  
resources to meet this challenge.  
In pursuance of the ethos and established goals of our  
corporate wide QV2000 program, it is the stated objective  
of AVX Tantalum to supply our customers with a world class  
service in the manufacturing and supplying of electronic  
components which will result in an adequate return on  
investment.  
2. By continually fostering and promoting culture of continu-  
ous improvement through ongoing training and empowered  
participation of employees at all levels of the company.  
3. By Continuous Process Improvement using sound engi-  
neering principles to enhance existing equipment, material  
and processes. This will involve the application of the  
science of S.P.C. focused on improving the Process  
Capability Index, Cpk.  
This world class service shall be defined as consistently  
supplying product and services of the highest quality and  
reliability.  
This should encompass, but not be restricted to all aspects  
of the customer supply chain.  
All AVX Tantalum manufacturing locations are ISO9000  
approved and Paignton is approved to QS9000 - Automotive  
Quality System Requirements.  
In addition any new or changed products, processes or  
services will be qualified to established standards of quality  
and reliability.  
3
TAJ Series  
The TAJ standard series encompasses  
the five key sizes recognized by major  
OEMs throughout the world. The V case  
size has been added to the TAJ range  
to allow high CVs to be offered. The  
operational temperature is -55°C to  
+85°C at rated voltage and up to +125°C  
with voltage derating in applications  
utilizing recommended series resistance.  
TAJ is available in standard and extended  
ranges.  
CASE DIMENSIONS: millimeters (inches)  
Code  
EIA  
W+0.2 (0.008)  
-0.1 (0.004)  
L 0.2 (0.008)  
H+0.2 (0.008) W1 0.2 (0.008) A+0.3 (0.012)  
S Min.  
Code  
-0.1 (0.004)  
1.6 (0.063)  
1.9 (0.075)  
2.6 (0.102)  
2.9 (0.114)  
4.1 (0.162)  
-0.2 (0.008)  
0.8 (0.031)  
0.8 (0.031)  
1.3 (0.051)  
1.3 (0.051)  
1.3 (0.051)  
A
B
C
D
E
3216  
3528  
6032  
7343  
7343H  
1.6 (0.063)  
2.8 (0.110)  
3.2 (0.126)  
4.3 (0.169)  
4.3 (0.169)  
3.2 (0.126)  
3.5 (0.138)  
6.0 (0.236)  
7.3 (0.287)  
7.3 (0.287)  
1.2 (0.047)  
2.2 (0.087)  
2.2 (0.087)  
2.4 (0.094)  
2.4 (0.094)  
1.1 (0.043)  
1.4 (0.055)  
2.9 (0.114)  
4.4 (0.173)  
4.4 (0.173)  
3.45 0.3  
(0.136 0.012)  
V
6.1 (0.240)  
7.3 (0.287)  
3.1 (0.120)  
1.4 (0.055)  
3.4 (0.133)  
W1 dimension applies to the termination width for A dimensional area only.  
HOW TO ORDER  
TAJ  
C
106  
M
025  
R
**  
Type  
Case Code  
See table above  
Capacitance Code  
pF code: 1st two  
digits represent  
significant figures  
3rd digit represents  
multiplier (number of  
zeros to follow)  
Tolerance  
K= 10ꢀ  
M= 20ꢀ  
Rated DC Voltage  
Packaging  
Consult page 42  
for details  
Additional  
characters may be  
added for special  
requirements  
TECHNICAL SPECIFICATIONS  
Technical Data:  
All technical data relate to an ambient temperature of +25°C  
Capacitance Range:  
Capacitance Tolerance:  
0.1µF to 470µF  
20ꢀ; 10ꢀ  
Rated Voltage (VR)  
Category Voltage (VC)  
Surge Voltage (VS)  
Surge Voltage (VS)  
Temperature Range:  
Environmental Classification:  
Reliability  
Ϲ +85°C:  
Ϲ +125°C:  
Ϲ +85°C:  
Ϲ +125°C:  
2
4
6.3  
4
8
10  
7
13  
8
16  
10  
20  
12  
20  
13  
26  
16  
25  
17  
32  
20  
35  
23  
46  
28  
50  
33  
65  
40  
1.3  
2.7  
1.7  
2.7  
5.2  
3.2  
5
-55°C to +125°C  
55/125/56 (IEC 68-2)  
1ꢀ per 1000h at 85°C with a 0.1/V series impedance, 60ꢀ confidence level  
Qualification  
CECC 30801 - 005 issue 1  
EIA 535BAAC  
4
TAJ Series  
CAPACITANCE AND VOLTAGE RANGE  
(LETTER DENOTES CASE CODE)  
Capacitance  
Rated voltage (VR) at 85°C  
µF  
Code  
2V  
4V  
6.3V  
10V  
16V  
20V  
25V  
35V  
50V  
0.10  
0.15  
0.22  
104  
154  
224  
A
A
A
A
A/B  
A/B  
0.33  
0.47  
0.68  
334  
474  
684  
A
A/B  
A/B  
B
C
C
A
A
A
1.0  
1.5  
2.2  
105  
155  
225  
A
A
A/B  
A
A
A/B  
A
A/B  
B A  
B A  
B/C A  
B/C  
C
D C  
D
A
A
A
3.3  
4.7  
6.8  
335  
475  
685  
A
A
A/B  
A
A/B  
A/B  
A/B  
B A  
B/C A  
A/B  
B/C A  
B/C  
B/C  
C B  
C B  
C B  
C/D B  
D C  
D
D
D
A
A
10  
15  
22  
106  
156  
226  
A
B A  
A
A/B  
B A  
B/C A  
B/C A  
B/C A  
C B A  
B/C A  
C B  
C/D B  
C B  
C/D B  
D C B  
C/D  
D
D C  
D C  
D C  
E D  
E
33  
47  
68  
336  
476  
686  
A/B  
B A  
B/C  
C B A  
C/D B  
C/D B  
C/D B  
D C B  
D C  
D C B  
D C  
D C  
D C  
D C  
E D  
E D  
D
E
D
E
A
100  
150  
220  
330  
470  
680  
107  
157  
227  
337  
477  
687  
B/C  
B
D C B  
C/D  
D C  
E D  
E D  
E D  
D/ V  
V D/E  
E
B
C
C/D  
C/D  
V D/E  
E
E
E/ V D  
E
D/E/ V  
E
V
E
V
D
E
1000  
1500  
108  
158  
D
E
= Standard Range  
= Extended Range  
= Development Range  
5
TAJ Series  
RATINGS & PART NUMBER REFERENCE  
AVX  
Part No.  
Case Capacitance  
Size µF  
DCL  
(µA)  
Max.  
DF  
%
Max.  
ESR  
max. ()  
@ 100 kHz  
AVX  
Part No.  
Case Capacitance  
Size µF  
DCL  
(µA)  
Max.  
DF  
%
Max.  
ESR  
max. ()  
@ 100 kHz  
10 volt @ 85°C (6.3 volt @ 125°C)  
2 volt @ 85°C (1.2 volt @ 125°C)  
TAJA155*010  
TAJA225*010  
TAJA335*010  
TAJA475*010  
TAJB475*010  
TAJA685*010  
TAJB685*010  
TAJA106*010  
TAJB106*010  
TAJC106*010  
TAJA156*010  
TAJB156*010  
TAJC156*010  
TAJB226*010  
TAJC226*010  
TAJB336*010  
TAJC336*010  
TAJD336*010  
TAJC476*010  
TAJD476*010  
TAJC686*010  
TAJD686*010  
TAJC107*010  
TAJD107*010  
TAJD157*010  
TAJE157*010  
TAJD227*010  
TAJE227*010  
TAJD337*010  
TAJE337*010  
TAJV337*010  
TAJE477*010  
A
A
A
A
B
A
B
A
B
C
A
B
C
B
C
B
C
D
C
D
C
D
C
D
D
E
1.5  
2.2  
3.3  
4.7  
4.7  
6.8  
6.8  
10  
10  
10  
15  
15  
15  
22  
22  
33  
33  
33  
47  
47  
68  
68  
100  
100  
150  
150  
220  
220  
330  
330  
330  
470  
0.5  
0.5  
0.5  
0.5  
0.5  
0.7  
0.7  
1.0  
1.0  
1.0  
1.5  
1.5  
1.5  
2.2  
2.2  
3.3  
3.3  
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
8
8
8
8
8
8
8
10  
10.0  
7.0  
5.5  
5.0  
4.0  
4.0  
3.0  
3.0  
2.5  
2.5  
3.2  
2.8  
2.0  
2.4  
1.8  
2.0  
1.6  
1.1  
1.2  
0.9  
1.3  
0.9  
1.2  
0.9  
0.9  
0.9  
0.9  
0.9  
0.9  
0.9  
0.9  
0.9  
TAJA476*002  
A
47  
0.9  
6
3.0  
4 volt @ 85°C (2.5 volt @ 125°C)  
TAJA475*004  
TAJA685*004  
TAJA106*004  
TAJA156*004  
TAJB156*004  
TAJA226*004  
TAJA336*004  
TAJB336*004  
TAJB476*004  
TAJB686*004  
TAJC686*004  
TAJB107*004  
TAJC107*004  
TAJC227*004  
TAJD227*004  
TAJE337*004  
A
A
A
A
B
A
A
B
B
B
C
B
C
C
D
E
4.7  
6.8  
10  
15  
15  
22  
33  
33  
47  
68  
0.5  
0.5  
0.5  
0.6  
0.6  
0.9  
1.3  
1.4  
1.9  
2.7  
2.7  
4.0  
4.0  
8.8  
8.8  
13.2  
6
6
6
6
6
6
6
6
6
6
6
8
6
8
8
8
7.5  
6.5  
6.0  
4.0  
3.0  
3.5  
3.0  
2.8  
2.4  
1.8  
1.6  
1.6  
1.3  
1.2  
0.9  
0.9  
68  
100  
100  
220  
220  
330  
3.3  
4.7  
4.7  
6.8  
6.3 volt @ 85°C (4 volt @ 125°C)  
6.8  
TAJA225*006  
TAJA335*006  
TAJA475*006  
TAJA685*006  
TAJB685*006  
TAJA106*006  
TAJB106*006  
TAJA156*006  
TAJB156*006  
TAJA226*006  
TAJB226*006  
TAJC226*006  
TAJB336*006  
TAJC336*006  
TAJB476*006  
TAJC476*006  
TAJD476*006  
TAJB686*006  
TAJC686*006  
TAJD686*006  
TAJC107*006  
TAJD107*006  
TAJC157*006  
TAJD157*006  
TAJC227*006  
TAJD227*006  
TAJE337*006  
TAJE477*006  
TAJV477*006  
A
A
A
A
B
A
B
A
B
A
B
C
B
C
B
C
D
B
C
D
C
D
C
D
C
D
E
2.2  
3.3  
4.7  
6.8  
6.8  
10  
10  
15  
15  
22  
22  
22  
33  
33  
47  
47  
47  
68  
68  
68  
100  
100  
150  
150  
220  
220  
330  
470  
470  
0.5  
0.5  
0.5  
0.5  
0.5  
0.6  
0.6  
1.0  
1.0  
1.4  
1.4  
1.4  
2.1  
2.1  
3.0  
3.0  
3.0  
4.3  
4.3  
4.3  
6.3  
6.3  
9.5  
9.5  
13.9  
13.9  
20.8  
29.6  
29.6  
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
8
6
6
6
6
6
6
10  
8
8
10  
8
9.0  
7.0  
6.0  
5.0  
4.0  
4.0  
3.0  
3.5  
2.5  
3.0  
2.5  
2.0  
2.2  
1.8  
2.0  
1.6  
1.1  
1.8  
1.6  
0.9  
1.4  
0.9  
1.3  
0.9  
1.2  
0.9  
0.9  
0.9  
0.9  
10.0  
10.0  
15.0  
15.0  
22.0  
22.0  
33.0  
33.0  
33.0  
47.0  
D
E
D
E
V
E
16 volt @ 85°C (10 volt @ 125°C)  
TAJA105*016  
TAJA155*016  
TAJA225*016  
TAJB225*016  
TAJA335*016  
TAJB335*016  
TAJA475*016  
TAJB475*016  
TAJA685*016  
TAJB685*016  
TAJC685*016  
TAJB106*016  
TAJC106*016  
TAJB156*016  
TAJC156*016  
TAJB226*016  
TAJC226*016  
TAJD226*016  
TAJC336*016  
TAJD336*016  
TAJC476*016  
TAJD476*016  
TAJD686*016  
TAJD107*016  
TAJE107*016  
TAJD157*016  
TAJV157*016  
TAJV227*016  
A
A
A
B
A
B
A
B
A
B
C
B
C
B
C
B
C
D
C
D
C
D
D
D
E
1.0  
1.5  
2.2  
2.2  
3.3  
3.3  
4.7  
4.7  
6.8  
6.8  
6.8  
10  
10  
15  
15  
22  
22  
22  
33  
33  
47  
47  
68  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.8  
0.8  
1.1  
1.1  
1.1  
1.6  
1.6  
2.4  
2.4  
3.5  
3.5  
3.5  
5.3  
5.3  
7.5  
7.5  
10.8  
16.0  
16.0  
24.0  
24.0  
35.2  
4
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
8
8
11.0  
8.0  
6.5  
5.5  
5.0  
4.5  
4.0  
3.5  
3.5  
2.5  
2.5  
2.8  
2.0  
2.5  
1.8  
2.3  
1.6  
1.1  
1.5  
0.9  
1.4  
0.9  
0.9  
0.9  
0.9  
0.9  
0.9  
0.9  
E
V
All technical data relates to an ambient temperature of +25°C measured at  
120 Hz, 0.5V RMS unless otherwise stated.  
*Insert K for 10% and M for 20%.  
NOTE: We reserve the right to supply higher specification parts in the same  
case size, to the same reliability standards.  
100  
100  
150  
150  
220  
D
V
V
For parametric information on development codes, please contact your  
local AVX sales office.  
6
TAJ Series  
RATINGS & PART NUMBER REFERENCE  
AVX  
Part No.  
Case Capacitance  
Size µF  
DCL  
(µA)  
Max.  
DF  
%
Max.  
ESR  
max. ()  
@ 100 kHz  
AVX  
Part No.  
Case Capacitance  
Size µF  
DCL  
(µA)  
Max.  
DF  
%
Max.  
ESR  
max. ()  
@ 100 kHz  
35 volt @ 85°C (23 volt @ 125°C)  
20 volt @ 85°C (13 volt @ 125°C)  
TAJA104*035  
TAJA154*035  
TAJA224*035  
TAJA334*035  
TAJA474*035  
TAJB474*035  
TAJA684*035  
TAJB684*035  
TAJA105*035  
TAJB105*035  
TAJA155*035  
TAJB155*035  
TAJC155*035  
TAJB225*035  
TAJC225*035  
TAJB335*035  
TAJC335*035  
TAJB475*035  
TAJC475*035  
TAJD475*035  
TAJC685*035  
TAJD685*035  
TAJC106*035  
TAJD106*035  
TAJC156*035  
TAJD156*035  
TAJD226*035  
TAJE226*035  
TAJD336*035  
A
A
A
A
A
B
A
B
A
B
A
B
C
B
C
B
C
B
C
D
C
D
C
D
C
D
D
E
0.1  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.8  
0.8  
1.2  
1.2  
1.6  
1.6  
1.6  
2.4  
2.4  
3.5  
3.5  
5.3  
5.3  
7.7  
7.7  
11.6  
4
4
4
4
4
4
4
4
4
4
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
24.0  
21.0  
18.0  
15.0  
12.0  
10.0  
8.0  
8.0  
7.5  
6.5  
7.5  
5.2  
4.5  
4.2  
3.5  
3.5  
2.5  
3.1  
2.2  
1.5  
1.8  
1.3  
1.6  
1.0  
1.4  
0.9  
0.9  
0.9  
0.9  
TAJA684*020  
TAJA105*020  
TAJA155*020  
TAJA225*020  
TAJB225*020  
TAJA335*020  
TAJB335*020  
TAJA475*020  
TAJB475*020  
TAJC475*020  
TAJB685*020  
TAJC685*020  
TAJB106*020  
TAJC106*020  
TAJB156*020  
TAJC156*020  
TAJD156*020  
TAJC226*020  
TAJD226*020  
TAJC336*020  
TAJD336*020  
TAJD476*020  
TAJD686*020  
TAJE686*020  
TAJV107*020  
A
A
A
A
B
A
B
A
B
C
B
C
B
C
B
C
D
C
D
C
D
D
D
E
0.68  
1.0  
1.5  
2.2  
2.2  
3.3  
3.3  
4.7  
4.7  
4.7  
6.8  
6.8  
0.5  
0.5  
0.5  
0.5  
0.5  
0.7  
0.7  
1.0  
1.0  
1.0  
1.4  
1.4  
2.0  
2.0  
3.0  
3.0  
3.0  
4.4  
4.4  
6.6  
6.6  
9.4  
13.6  
13.6  
20.0  
4
4
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
8
12.0  
9.0  
6.5  
5.3  
3.5  
4.5  
3.0  
4.0  
3.0  
2.8  
2.5  
2.0  
2.1  
1.9  
2.0  
2.0  
1.1  
1.6  
0.9  
1.5  
0.9  
0.9  
0.9  
0.9  
0.9  
0.15  
0.22  
0.33  
0.47  
0.47  
0.68  
0.68  
1.0  
1.0  
1.5  
1.5  
1.5  
2.2  
2.2  
3.3  
3.3  
4.7  
4.7  
4.7  
6.8  
10  
10  
15  
15  
15  
22  
22  
33  
33  
47  
68  
68  
100  
6.8  
10.0  
10.0  
15.0  
15.0  
22.0  
22.0  
33.0  
V
25 volt @ 85°C (16 volt @ 125°C)  
TAJA474*025  
TAJA684*025  
TAJA105*025  
TAJA155*025  
TAJB155*025  
TAJA225*025  
TAJB225*025  
TAJB335*025  
TAJC335*025  
TAJB475*025  
TAJC475*025  
TAJB685*025  
TAJC685*025  
TAJC106*025  
TAJD106*025  
TAJD156*025  
TAJC226*025  
TAJD226*025  
TAJD336*025  
TAJE336*025  
TAJD476*025  
A
A
A
A
B
A
B
B
C
B
C
B
C
C
D
D
C
D
D
E
0.47  
0.68  
1.0  
1.5  
1.5  
2.2  
2.2  
3.3  
3.3  
4.7  
4.7  
6.8  
6.8  
0.5  
0.5  
0.5  
0.5  
0.5  
0.6  
0.6  
0.8  
0.8  
1.2  
1.2  
1.7  
1.7  
2.5  
2.5  
3.8  
5.5  
5.5  
8.3  
8.3  
11.8  
4
4
4
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
14.0  
10.0  
8.0  
7.5  
5.0  
7.0  
4.5  
3.5  
2.8  
2.8  
2.4  
2.8  
2.0  
1.8  
1.2  
1.0  
1.4  
0.9  
0.9  
0.9  
0.9  
D
50 volt @ 85°C (33 volt @ 125°C)  
TAJA104*050  
TAJA154*050  
TAJB154*050  
TAJA224*050  
TAJB224*050  
TAJB334*050  
TAJC474*050  
TAJC684*050  
TAJC105*050  
TAJC155*050  
TAJD155*050  
TAJD225*050  
TAJD335*050  
TAJD475*050  
TAJD685*050  
TAJE106*050  
A
A
B
A
B
B
C
C
C
C
D
D
D
D
D
E
0.1  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.8  
0.8  
1.1  
1.7  
2.4  
3.4  
5.0  
4
4
4
4
4
4
4
4
4
6
6
6
6
6
6
8
22.0  
15.0  
17.0  
18.0  
14.0  
12.0  
8.0  
7.0  
5.5  
4.5  
4.0  
0.15  
0.15  
0.22  
0.22  
0.33  
0.47  
0.68  
1.0  
1.5  
1.5  
2.2  
3.3  
10  
10  
15  
22  
22  
33  
33  
47  
2.5  
2.0  
1.4  
1.0  
4.7  
6.8  
10.0  
0.9  
D
For parametric information on development codes, please contact your  
local AVX sales office.  
All technical data relates to an ambient temperature of +25°C measured at  
120 Hz, 0.5V RMS unless otherwise stated.  
*Insert K for 10% and M for 20%.  
NOTE: We reserve the right to supply higher specification parts in the  
same case size, to the same reliability standards.  
7
TAJ Series  
Low Profile  
Three additional case sizes are available  
in the TAJ range offering low profile solid  
tantalum chip capacitors. Designed for  
applications where maximum height of  
components above or below board are of  
prime consideration, this height of 1.2mm  
equates to that of a standard integrated  
circuit package after mounting. The S&T  
footprints are identical to the A&B case  
size parts.  
CASE DIMENSIONS: millimeters (inches)  
Code  
EIA  
W+0.2 (0.008)  
-0.1 (0.004)  
L 0.2 (0.008)  
H Max.  
W1 0.1 (0.004) A+0.3 (0.012)  
-0.1 (0.004)  
S Min.  
Code  
R*  
S**  
T**  
W
2012  
3216L  
3528L  
1.3 (0.051)  
1.6 (0.063)  
2.8 (0.110)  
3.2 (0.126)  
4.3 (0.169)  
2.05 (0.081)  
3.2 (0.126)  
3.5 (0.138)  
6.0 (0.236)  
7.3 (0.287)  
1.2 (0.047)  
1.2 (0.047)  
1.2 (0.047)  
1.5 (0.059)  
2.0 (0.079)  
1.2 (0.047)  
1.2 (0.047)  
2.2 (0.087)  
2.2 (0.087)  
2.4 (0.094)  
0.5 (0.020)  
0.8 (0.031)  
0.8 (0.031)  
1.3 (0.051)  
1.3 (0.051)  
0.85 (0.033)  
1.1 (0.043)  
1.4 (0.055)  
2.9 (0.114)  
4.4 (0.173)  
Y
* 0805 Equivalent  
** Low Profile Versions of A & B Case  
W1 dimension applies to the termination width for A dimensional area only.  
Pad Stand-off is 0.1 0.1.  
CAPACITANCE AND VOLTAGE RANGE (LETTER DENOTES CASE CODE)  
Capacitance  
Rated voltage (VR) at 85°C  
µF  
Code  
2V  
4V  
6.3V  
10V  
16V  
20V  
25V  
0.10  
0.15  
0.22  
104  
154  
224  
R/S  
R/S  
R/S  
0.33  
0.47  
0.68  
334  
474  
684  
R/S  
R/S  
R/S/T  
R/S  
1.0  
1.5  
2.2  
105  
155  
225  
R/S  
R/S  
R/S  
R/S/T  
S
T
R/S/T  
T
T
R/S  
R/S  
R/S  
3.3  
4.7  
6.8  
335  
475  
685  
R/S  
R/S  
S/T  
R/S  
S/T  
T
S/T  
T R  
T
T
R
R
W
10  
106  
156  
226  
336  
476  
686  
107  
157  
227  
337  
477  
687  
S
R/T  
R
T
T
W
W
15  
22  
X
Y
W
33  
47  
68  
100  
150  
220  
330  
470  
680  
W
X
Y
Y
W
X
Y
W
Y
X
Y
W
W
X
Y
W
X
X/Y  
X
Y
1000  
108  
Y
= Standard Range  
= Development Range  
X = 1.5mm height in a D case footprint  
8
TAJ Series  
Low Profile  
RATINGS & PART NUMBER REFERENCE  
AVX  
Case Capacitance  
DCL  
(µA)  
DF  
%
ESR  
max. ()  
@ 100 kHz  
AVX  
Part No.  
Case Capacitance  
DCL  
(µA)  
Max.  
DF  
%
Max.  
ESR  
max. ()  
@ 100 kHz  
Part No.  
Size  
µF  
Size  
µF  
Max.  
Max.  
2 volt  
16 volt  
TAJR475*002  
TAJR685*002  
TAJS106*002  
R
R
S
4.7  
6.8  
10.0  
0.5  
0.5  
0.5  
6
6
6
20.0  
20.0  
20.0  
TAJR684*016  
TAJS684*016  
TAJR105*016  
TAJS105*016  
TAJT105*016  
TAJS155*016  
TAJT225*016  
TAJT335*016  
TAJW106*016  
R
S
R
S
T
S
T
0.68  
0.68  
1.0  
1.0  
1.0  
1.5  
2.2  
3.3  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
1.6  
4
4
4
4
4
6
6
6
6
25.0  
25.0  
20.0  
15.0  
15.0  
12.0  
6.5  
4 volt  
TAJR225*004  
TAJS225*004  
TAJR335*004  
TAJS335*004  
TAJR475*004  
TAJS475*004  
TAJS685*004  
TAJT685*004  
TAJR106*004  
TAJT106*004  
R
S
R
S
R
S
S
T
2.2  
2.2  
3.3  
3.3  
4.7  
4.7  
6.8  
6.8  
10.0  
10.0  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
6
6
6
6
6
6
6
6
6
6
25.0  
25.0  
20.0  
18.0  
12.0  
10.0  
8.0  
6.0  
10.0  
5.0  
T
W
5.0  
2.0  
10.0  
20 volt  
TAJR104*020  
TAJS104*020  
TAJR154*020  
TAJS154*020  
TAJR224*020  
TAJS224*020  
TAJR334*020  
TAJS334*020  
TAJR474*020  
TAJS474*020  
TAJR684*020  
TAJS684*020  
TAJT684*020  
TAJR105*020  
TAJS105*020  
TAJT105*020  
TAJT155*020  
TAJT225*020  
R
S
R
S
R
S
R
S
R
S
R
S
T
0.1  
0.1  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
6
6
25.0  
25.0  
25.0  
25.0  
25.0  
25.0  
25.0  
25.0  
25.0  
25.0  
25.0  
25.0  
15.0  
20.0  
12.0  
9.0  
R
T
0.15  
0.15  
0.22  
0.22  
0.33  
0.33  
0.47  
0.47  
0.68  
0.68  
0.68  
1.0  
6.3 volt  
TAJR155*006  
TAJS155*006  
TAJR225*006  
TAJS225*006  
TAJR335*006  
TAJS335*006  
TAJS475*006  
TAJT475*006  
TAJT685*006  
TAJT156*006  
TAJW336*006  
R
S
R
S
R
S
S
T
1.5  
1.5  
2.2  
2.2  
3.3  
3.3  
4.7  
4.7  
6.8  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
1.0  
2.1  
6
6
6
6
6
6
6
6
6
6
6
25.0  
25.0  
20.0  
18.0  
12.0  
9.0  
7.5  
6.0  
5.0  
4.5  
R
S
T
T
T
1.0  
1.0  
1.5  
2.2  
T
T
W
15.0  
33.0  
6.5  
6.0  
2.0  
10 volt  
For parametric information on development codes, please contact your  
local AVX sales office.  
TAJR105*010  
TAJS105*010  
TAJR155*010  
TAJS155*010  
TAJR225*010  
TAJS225*010  
TAJS335*010  
TAJT335*010  
TAJT475*010  
TAJT685*010  
TAJT106*010  
TAJY686*010  
TAJY107*010  
R
S
R
S
R
S
S
T
T
T
T
Y
Y
1.0  
1.0  
1.5  
1.5  
2.2  
2.2  
3.3  
3.3  
4.7  
6.8  
10.0  
68  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
1.0  
1.0  
6.8  
10  
4
4
6
6
6
6
6
6
6
6
6
6
6
25.0  
25.0  
20.0  
20.0  
15.0  
12.0  
8.0  
6.0  
5.0  
4.0  
3.0  
0.9  
0.9  
100  
All technical data relates to an ambient temperature of +25°C measured at  
120 Hz, 0.5V RMS unless otherwise stated.  
*Insert K for 10% and M for 20%.  
NOTE: We reserve the right to supply higher specification parts in the  
same case size, to the same reliability standards.  
9
TPS Series  
Low ESR  
The TPS surface mount products  
have inherently low ESR (equivalent series  
resistance) and are capable of higher  
ripple current handling, producing lower  
ripple voltages, less power and heat  
dissipation than standard product for the  
most efficient use of circuit power. TPS  
has been designed, manufactured, and  
preconditioned for optimum performance  
in typical power supply applications. By  
combining the latest improvements in  
tantalum powder technology, improved  
manufacturing processes, and applica-  
tion specific preconditioning tests, AVX is  
able to provide a technologically superior  
alternative to the standard range.  
CASE DIMENSIONS: millimeters (inches)  
Code  
EIA  
W+0.2 (0.008)  
-0.1 (0.004)  
L 0.2 (0.008)  
H+0.2 (0.008) W1 0.2 (0.008) A+0.3 (0.012)  
S Min.  
Code  
-0.1 (0.004)  
1.6 (0.063)  
1.9 (0.075)  
2.6 (0.102)  
2.9 (0.114)  
4.1 (0.162)  
-0.2 (0.008)  
0.8 (0.031)  
0.8 (0.031)  
1.3 (0.051)  
1.3 (0.051)  
1.3 (0.051)  
A
B
C
D
E
3216  
3528  
6032  
7343  
7343H  
1.6 (0.063)  
2.8 (0.110)  
3.2 (0.126)  
4.3 (0.169)  
4.3 (0.169)  
3.2 (0.126)  
3.5 (0.138)  
6.0 (0.236)  
7.3 (0.287)  
7.3 (0.287)  
1.2 (0.047)  
2.2 (0.087)  
2.2 (0.087)  
2.4 (0.094)  
2.4 (0.094)  
1.1 (0.043)  
1.4 (0.055)  
2.9 (0.114)  
4.4 (0.173)  
4.4 (0.173)  
3.45 0.3  
(0.136 0.012)  
V
6.1 (0.240)  
7.3 (0.287)  
3.1 (0.120)  
1.4 (0.055)  
3.4 (0.133)  
W1 dimension applies to the termination width for A dimensional area only.  
HOW TO ORDER  
TPS  
D
107  
M
010  
R
0100  
Type  
Case Size  
See table above  
Capacitor Code  
pF code: 1st two  
digits represent  
Tolerance  
K= 10ꢀ  
M= 20ꢀ  
Rated  
DC Voltage  
Packaging  
Consult page 42  
for details  
Maximum ESR in  
Milliohms  
*See note below  
significant figures,  
3rd digit represents  
multiplier (number of  
zeros to follow)  
NOTE: The EIA & CECC standards for low ESR Solid Tantalum Capacitors  
allow an ESR movement to 1.25 times catalog limit post mounting  
TECHNICAL SPECIFICATIONS  
Technical Data:  
All technical data relate to an ambient temperature of +25°C  
Capacitance Range:  
Capacitance Tolerance:  
Rated Voltage (VR)  
Category Voltage (VC)  
Surge Voltage (VS)  
Surge Voltage (VS)  
Temperature Range:  
Environmental Classification:  
Reliability:  
1.5µF to 470µF  
20ꢀ; 10ꢀ  
Ϲ +85°C:  
Ϲ +125°C:  
Ϲ +85°C:  
Ϲ +125°C:  
6.3  
4
10  
7
16  
10  
20  
12  
20  
13  
26  
16  
25  
17  
32  
20  
35  
23  
46  
28  
8
5
13  
8
-55°C to +125°C  
55/125/56 (IEC 68-2)  
1ꢀ per 1000h at 85°C with 0.1/V series impedance, 60ꢀ confidence level  
10  
TPS Series  
Low ESR  
CAPACITANCE AND VOLTAGE RANGE (LETTER DENOTES CASE CODE)  
Capacitance  
Rated voltage (VR) at 85°C  
µF  
Code  
6.3V  
10V  
16V  
20V  
25V  
35V  
1.5  
155  
335  
475  
685  
106  
A(3000)  
3.3  
4.7  
6.8  
A(3500)  
A(1800)  
B(1500)  
C(600)  
D(300)  
E(200)  
10  
A(1800)  
B(1000)  
C(450)  
C(500)  
D(200)  
C(450)  
D(300)  
15  
22  
156  
226  
A(1500)  
B(600)  
A(1000)  
B(700)  
B(800)  
C(375)  
D(400)  
E(200-300)  
33  
47  
336  
476  
686  
107  
157  
227  
337  
477  
C(375-500)  
C(350)  
C(300)  
D(200)  
E(150)  
E(175-300)  
D(250)  
D(300)  
C(350)  
D(150-200)  
68  
D(150)  
E(125-150)  
V(85-200)  
V(95-300)  
C(200)  
D(65-140)  
E(125)  
D(125-150)  
E(100-150)  
100  
150  
220  
330  
470  
C(150)  
D(125)  
D(100)  
D(150)  
V(75)  
D(100)  
D (150)  
E(60-150)  
V(60)  
D(150)  
E(60-100)  
V(60-100)  
V(75-150)  
E(100-150)  
V(60-100)  
E(50-200)  
V(55-100)  
E(50-200)  
ESR limits quoted in brackets are in milliohms  
11  
TPS Series  
Low ESR  
RATINGS & PART NUMBER REFERENCE  
AVX  
Part No.  
Case Capacitance  
Rated  
Voltage  
DCL  
DF  
%
Max.  
ESR  
Max. (m)  
@100kHz  
100kHz Ripple Current (mA) Ratings  
Size  
µF  
(µA)  
Max.  
25ºC  
85ºC  
125ºC  
TPSA156*006R1500  
TPSB336*006R0600  
TPSC107*006R0150  
TPSD157*006R0125  
TPSD227*006R0100  
TPSE337*006R0100  
TPSE337*006R0125  
TPSE337*006R0150  
TPSV337*006R0060  
TPSV337*006R0100  
TPSE477*006R0050  
TPSE477*006R0100  
TPSE477*006R0200  
TPSV477*006R0055  
TPSV477*006R0100  
A
B
C
D
D
E
E
E
V
V
E
E
E
V
V
15  
33  
6.3  
6.3  
6.3  
6.3  
6.3  
6.3  
6.3  
6.3  
6.3  
6.3  
6.3  
6.3  
6.3  
6.3  
6.3  
0.9  
2.1  
6.3  
6
6
6
6
6
8
8
8
8
1500  
600  
150  
125  
100  
100  
125  
150  
60  
100  
50  
100  
200  
55  
224  
376  
856  
200  
337  
766  
89  
151  
343  
438  
490  
514  
460  
420  
816  
632  
727  
514  
363  
853  
632  
100  
150  
220  
330  
330  
330  
330  
330  
470  
470  
470  
470  
470  
9.5  
1095  
1225  
1285  
1149  
1049  
2041  
1581  
1817  
1285  
908  
980  
13.9  
20.8  
20.8  
20.8  
20.8  
20.8  
29.6  
29.6  
29.6  
29.6  
29.6  
1095  
1149  
1028  
938  
1826  
1414  
1625  
1149  
812  
8
10  
10  
10  
10  
10  
2132  
1581  
1907  
1414  
100  
TPSA106*010R1800  
TPSA156*010R1000  
TPSB226*010R0700  
TPSC336*010R0375  
TPSC336*010R0500  
TPSC476*010R0350  
TPSC107*010R0200  
TPSD107*010R0065  
TPSD107*010R0080  
TPSD107*010R0100  
TPSD107*010R0125  
TPSD107*010R0140  
TPSD107*010R0150  
TPSE107*010R0125  
TPSD157*010R0100  
TPSD227*010R0150  
TPSE227*010R0060  
TPSE227*010R0100  
TPSE227*010R0125  
TPSE227*010R0150  
TPSV227*010R0060  
TPSD337*010R0150  
TPSE337*010R0060  
TPSE337*010R0100  
TPSV337*010R0060  
TPSV337*010R0100  
TPSE477*010R0050  
TPSE477*010R0100  
TPSE477*010R0200  
A
A
B
C
C
C
C
D
D
D
D
D
D
E
D
D
E
E
E
E
V
D
E
E
V
V
E
E
E
10  
15  
22  
33  
33  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
1.0  
1.5  
2.2  
3.3  
3.3  
6
6
6
6
6
6
8
6
6
6
6
6
6
6
6
8
8
8
8
8
8
8
8
8
8
10  
10  
10  
10  
1800  
1000  
700  
375  
500  
350  
200  
65  
204  
274  
348  
542  
469  
561  
742  
183  
245  
312  
484  
420  
501  
663  
1359  
1225  
1095  
980  
82  
110  
139  
217  
188  
224  
297  
608  
547  
490  
438  
414  
400  
460  
490  
400  
663  
514  
460  
420  
817  
400  
663  
514  
817  
632  
727  
514  
363  
47  
4.7  
100  
100  
100  
100  
100  
100  
100  
100  
150  
220  
220  
220  
220  
220  
220  
330  
330  
330  
330  
330  
470  
470  
470  
10.0  
10.0  
10.0  
10.0  
10.0  
10.0  
10.0  
10.0  
15.0  
22.0  
22.0  
22.0  
22.0  
22.0  
22.0  
33.0  
33.0  
33.0  
33.0  
33.0  
47.0  
47.0  
47.0  
1519  
1369  
1225  
1095  
1035  
1000  
1149  
1225  
1000  
1658  
1285  
1149  
1049  
2041  
1000  
1658  
1285  
2041  
1581  
1817  
1285  
908  
80  
100  
125  
140  
150  
125  
100  
150  
60  
100  
125  
150  
60  
150  
60  
100  
60  
100  
50  
100  
200  
926  
894  
1028  
1095  
894  
1483  
1149  
1028  
938  
1826  
894  
1483  
1149  
1826  
1414  
1625  
1149  
812  
12  
TPS Series  
Low ESR  
RATINGS & PART NUMBER REFERENCE  
AVX  
Part No.  
Case Capacitance  
Rated  
Voltage  
DCL  
DF  
%
Max.  
ESR  
Max. (m)  
@100kHz  
100kHz Ripple Current (mA) Ratings  
Size  
µF  
(µA)  
Max.  
25ºC  
85ºC  
125ºC  
TPSA335*016R3500  
TPSB156*016R0800  
TPSC226*016R0375  
TPSC336*016R0300  
TPSC476*016R0350  
TPSD476*016R0150  
TPSD476*016R0200  
TPSD686*016R0150  
TPSD107*016R0125  
TPSD107*016R0150  
TPSE107*016R0100  
TPSE107*016R0125  
TPSE107*016R0150  
TPSD157*016R0150  
TPSV157*016R0075  
TPSE227*016R0100  
TPSV227*016R0075  
TPSV227*016R0150  
A
B
C
C
C
D
D
D
D
D
E
E
E
D
V
E
V
V
3.3  
15  
22  
33  
47  
47  
47  
68  
100  
100  
100  
100  
100  
150  
150  
220  
220  
220  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
0.5  
2.4  
3.5  
5.3  
7.5  
7.5  
7.5  
10.9  
16.0  
16.0  
16.0  
16.0  
16.0  
24.0  
24.0  
35.2  
35.2  
35.2  
6
6
6
6
6
6
6
6
6
6
6
6
6
8
8
8
8
3500  
800  
375  
300  
350  
150  
200  
150  
125  
150  
100  
125  
150  
150  
75  
146  
326  
542  
606  
561  
1000  
866  
1000  
1095  
1000  
1285  
1149  
1049  
1000  
1826  
1285  
1826  
1291  
131  
292  
484  
542  
501  
894  
775  
894  
980  
59  
130  
217  
242  
224  
400  
346  
400  
438  
400  
514  
460  
420  
400  
730  
514  
730  
516  
894  
1149  
1028  
938  
894  
1633  
1149  
1633  
1155  
100  
75  
150  
10  
TPSA475*020R1800  
TPSB106*020R1000  
TPSC156*020R0450  
TPSD336*020R0200  
TPSE476*020R0150  
TPSE686*020R0125  
TPSE686*020R0150  
TPSV107*020R0085  
TPSV107*020R0200  
A
B
C
D
E
E
E
V
V
4.7  
10  
15  
33  
47  
68  
68  
100  
100  
20  
20  
20  
20  
20  
20  
20  
20  
20  
0.9  
2.0  
3.0  
6.6  
9.4  
13.6  
13.6  
20.0  
20.0  
6
6
6
6
6
6
6
8
10  
1800  
1000  
450  
200  
150  
125  
150  
85  
204  
292  
494  
183  
261  
442  
775  
938  
1028  
938  
1534  
1000  
82  
117  
198  
346  
420  
160  
420  
686  
447  
866  
1049  
1149  
1049  
1715  
1118  
200  
TPSA155*025R3000  
TPSB475*025R1500  
TPSC106*025R0500  
TPSD226*025R0200  
TPSE336*025R0175  
TPSE336*025R0200  
TPSE336*025R0300  
TPSD476*025R0250  
TPSV686*025R0095  
TPSV686*025R0150  
TPSV686*025R0300  
A
B
C
D
E
E
E
D
V
V
V
1.5  
4.7  
10  
22  
33  
33  
33  
47  
68  
68  
68  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
0.5  
1.2  
2.5  
5.5  
8.3  
8.3  
8.3  
11.8  
17.0  
17.0  
17.0  
6
6
6
6
6
6
6
6
8
3000  
1500  
500  
200  
175  
200  
300  
250  
95  
158  
238  
469  
866  
971  
908  
742  
775  
1622  
1291  
913  
141  
213  
420  
775  
868  
812  
663  
693  
1451  
1155  
816  
63  
95  
188  
346  
388  
363  
297  
310  
649  
516  
365  
10  
10  
150  
300  
TPSC475*035R0600  
TPSD106*035R0300  
TPSE106*035R0200  
TPSC156*035R0450  
TPSD156*035R0300  
TPSD226*035R0400  
TPSE226*035R0200  
TPSE226*035R0300  
TPSD336*035R0300  
C
D
E
C
D
D
E
4.7  
10  
10  
15  
15  
22  
22  
22  
33  
35  
35  
35  
35  
35  
35  
35  
35  
35  
1.6  
3.5  
3.5  
5.3  
5.3  
7.7  
7.7  
7.7  
11.6  
6
6
6
6
6
6
6
6
6
600  
300  
200  
450  
300  
400  
200  
300  
300  
428  
707  
908  
494  
707  
612  
908  
742  
707  
383  
632  
812  
442  
632  
548  
812  
663  
632  
171  
283  
363  
198  
283  
245  
363  
297  
283  
E
D
13  
TACmicrochip  
The worlds smallest surface mount  
Tantalum capacitor, small enough to  
create space providing room for ideas  
to grow.  
It offers you the highest energy store  
in an 0603 or 0805 case size; enhanced  
high frequency operation through unique  
ESR performance with temperature and  
voltage stability.  
TACmicrochip is a major breakthrough  
in miniaturization without reduction in  
performance.  
CASE DIMENSIONS: millimeters (inches)  
L
W
Code  
EIA  
Code  
W +0.20 (0.008)  
-0.10 (0.004)  
L +0.25 (0.010)  
-0.15 (0.006)  
H +0.20 (0.008)  
-0.10 (0.004)  
H
L
0603  
0805  
0.85 (0.033)  
1.35 (0.053)  
1.6 (0.063)  
2.0 (0.079)  
0.85 (0.033)  
1.35 (0.053)  
R
STANDARD CAPACITANCE RANGE  
(LETTER DENOTES CASE CODE)  
Capacitance  
Code  
Rated voltage at 85°C  
µF  
2V  
3V  
4V  
6.3V  
10V  
0.47  
0.68  
1.0  
474  
684  
105  
L
L
L
L
1.5  
2.2  
3.3  
155  
225  
335  
L
L
L
L
L
L
L
L
R
L
L
L
4.7  
6.8  
10.0  
475  
685  
106  
L
L
L
L
L
R
R
R
R
R
R
15.0  
22.0  
33.0  
47.0  
156  
226  
336  
476  
R
R
R
R
R
R
R
R
= Standard Range  
= Extended Range  
= Development Range  
14  
TACmicrochip  
RATINGS AND PART NUMBER REFERENCE  
Leakage  
µA  
(Max)  
DF  
Max  
ESR  
Max  
@100kHz  
Leakage  
DF  
ESR  
AVX  
Style  
Case  
Size  
Capacitance  
µF@120Hz  
AVX  
Case  
Size  
Capacitance  
µF@120Hz  
µA  
Max  
Style  
(Max)  
Max  
@100kHz  
(2 volt)  
(2 volt)  
TAC  
TAC  
TAC  
0603  
0603  
0603  
3.3  
4.7  
6.8  
0.5  
0.5  
0.5  
6
6
6
10  
10  
10  
TAC  
TAC  
TAC  
0805  
0805  
0805  
22  
33  
47  
0.5  
0.7  
1.0  
8
8
8
6
6
6
(3 volt)  
(4 volt)  
(3 volt)  
(4 volt)  
TAC  
TAC  
TAC  
0603  
0603  
0603  
2.2  
3.3  
4.7  
0.5  
0.5  
0.5  
6
6
6
10  
10  
10  
TAC  
TAC  
TAC  
0805  
0805  
0805  
15  
22  
33  
0.5  
0.7  
1.0  
8
8
8
6
6
6
TAC  
TAC  
TAC  
0603  
0603  
0603  
1.5  
2.2  
3.3  
0.5  
0.5  
0.5  
6
6
6
10  
10  
10  
TAC  
TAC  
TAC  
0805  
0805  
0805  
10  
15  
22  
0.5  
0.6  
0.9  
8
8
8
6
6
6
(6.3 volt)  
(6.3 volt)  
(10 volt)  
TAC  
TAC  
TAC  
0603  
0603  
0603  
1.0  
1.5  
2.2  
0.5  
0.5  
0.5  
6
6
6
10  
10  
10  
TAC  
TAC  
TAC  
0805  
0805  
0805  
6.8  
10  
15  
0.5  
0.6  
0.9  
8
8
8
6
6
6
(10 volt)  
TAC  
TAC  
TAC  
TAC  
0603  
0603  
0603  
0603  
0.47  
0.68  
1.0  
0.5  
0.5  
0.5  
0.5  
6
6
6
6
12  
10  
10  
10  
TAC  
TAC  
TAC  
0805  
0805  
0805  
4.7  
6.8  
10  
0.5  
0.7  
1.0  
8
8
8
6
6
6
1.5  
HOW TO ORDER  
TAC  
L
225  
M
003  
R
**  
Type  
TACmicrochip  
Case Code  
Capacitance Code  
pF code: 1st two  
digits represent  
significant figures,  
3rd digit represents  
multiplier (number of  
zeros to follow)  
Tolerance  
K= 10ꢀ  
M= 20ꢀ  
Rated DC Voltage  
Packaging  
Additional  
X=8mm 4-1/4"  
Tape & Reel  
characters may be  
add for special  
requirements  
R=7" Tape & Reel  
Solder Plated  
15  
TACmicrochip  
Continued investment in R&D has resulted in AVX  
introducing revolutionary technology to the tantalum  
capacitor market.  
35  
TACmicrochip Technology  
30  
Conventional Technology  
25  
20  
15  
10  
5
The new TACmicrochip breaks new ground with the  
unique structure allowing 10 times more capacitance to  
be packaged in the 0603 case size than is possible with  
traditional technology.  
Value  
Added  
Conventional molded tantalum technology results in  
an increase in ESR for each reduction in case size.  
Figure 1 shows a reduction in ESR performance of the  
TACmicrochip compared to the same case size if con-  
ventional technology were used.  
0
D
C
B
A
0805  
0603  
Case Size  
Figure 1.  
9
8
7
6
5
4
3
2
3
Figure 2 shows a major leap forward in µF/mm  
performance. The CV values offered in the 0603 cannot  
be achieved using conventional molded technology.  
TACmicrochip average  
Molded average  
Value  
Added  
These features coupled with the temperature and  
voltage stability of tantalum, enable system designers to  
achieve equipment miniaturization without compromis-  
ing performance, making TACmicrochip the optimum  
choice for size critical applications.  
1
0
87 88 89 90 91 92 93 94 95 96 97 98  
Figure 2.  
70  
60  
50  
40  
30  
20  
10  
0
Enhancing Leakage Current & Battery  
Efficiency.  
TACL155M006 DCL vs Voltage  
As portable electronic equipment becomes an integral  
part of everyday life, a key design focus becomes  
the ability to enhance and extend battery efficiency per-  
formance. Overall leakage current capability improve-  
ments are achieved using the unique TACmicrochip  
construction technology.  
0
1
2
3
4
5
6
Voltage (V)  
10  
1
Enhanced ESR & High Frequency Operation.  
The radically new construction technique used to  
manufacture the TACmicrochip eliminates a great many  
of the parasitic inductance resistance paths inherent  
in standard molded tantalum capacitors, giving the  
TACmicrochip an equivalent high frequency perfor-  
mance of larger sized product.  
TACL155M004  
ESR with Frequency  
0.1  
1E+02 1E+03 1E+04 1E+05 1E+06 1E+07 1E+08  
Frequency (Hz)  
1.58  
Volumetric Efficiency, Space & Weight Savings.  
Achieving the industries highest available capacitance  
in 0603 case size allows high bulk energy storage  
with minimal use of valuable circuit board space. Add  
stable temperature and voltage performance and  
TACmicrochip becomes your preferred choice of minia-  
ture tantalum chip capacitor for size critical applications.  
TACL155M006  
1.56  
1.54  
1.52  
1.50  
1.48  
1.46  
1.44  
1.42  
1.40  
Cap. with Temperature  
-60 -40 -20  
0
20 40 60 80 100 120 140  
Temperature (°C)  
16  
TACmicrochip  
WIRE BONDING WITHIN THE  
SEMICONDUCTOR CHIP PACKAGE  
SURFACE MOUNTING  
CHIP SOLDERING  
QUADS  
ARRAYS  
OTHER POSSIBLE CONFIGURATIONS FOR THE WAFER CAPACITOR  
The manufacturing techniques used to make the  
TACmicrochip allow AVX to offer various custom options.  
Some examples of which are shown above. Please contact  
your local AVX sales office if you have a specific requirement.  
17  
TAZ Series  
The TAZ molded surface mount series is  
designed for use in applications utilizing  
either solder, conductive adhesive or ther-  
mal compression bonding techniques.  
Case sizes (A through H) are compatible  
with CWR06 pad layouts and are qualified  
as the CWR09 style.  
with polarity, capacitance code and rated  
voltage. There are three termination  
finishes available: fused solder plated  
(standard) (“K” per MIL-C-55365), hot  
solder dipped (“C”) and gold plated (“B”).  
In addition, the molding compound has  
been selected to meet the flammability  
requirements of UL94V-O and outgassing  
requirements of NASA SP-R-0022A.  
The two styles are interchangeable per  
MIL-C-55365/4. Each chip is marked  
CASE DIMENSIONS: millimeters (inches)  
Case  
Width  
Length  
Height  
Term. Width  
W1  
Term. Length  
A+0.13 (0.005)  
“S” Min  
Code  
W 0.38 (0.015) L 0.38 (0.015) H 0.38 (0.015)  
“Regular”  
1.27 (0.050)  
1.27 (0.050)  
2.54 (0.100)  
2.54 (0.100)  
3.43 (0.135)  
2.79 (0.110)  
3.81 (0.150)  
2.54 (0.100) 1.27 (0.050)  
3.81 (0.150) 1.27 (0.050)  
1.27 0.13  
(0.050 0.005)  
0.76 (0.030) 0.38 (0.015)  
0.76 (0.030) 1.65 (0.065)  
0.76 (0.030) 1.65 (0.065)  
0.76 (0.030) 2.92 (0.115)  
0.76 (0.030) 3.43 (0.135)  
1.27 (0.050) 3.56 (0.140)  
1.27 (0.050) 4.06 (0.160)  
A
1.27 0.13  
(0.050 0.005)  
B
D
E
F
3.81 (0.150) 1.27 (0.050) 2.41+0.13/-0.25  
(0.095+0.005/-0.010)  
5.08 (0.200) 1.27 (0.050) 2.41+0.13/-0.25  
(0.095+0.005/-0.010)  
5.59 (0.220) 1.78 (0.070)  
3.30 0.13  
(0.130 0.005)  
6.73 (0.265) 2.79 (0.110)  
2.67 0.13  
(0.105 0.005)  
G
H
7.24 (0.285) 2.79 (0.110) 3.68+0.13/-0.51  
(0.145+0.005/-0.020)  
NOTE: For solder coated terminations add  
0.38 (0.015) max. to length and  
height dimensions.  
Additional special case sizes are available. Contact your local sales office for details.  
TECHNICAL SPECIFICATIONS  
Technical Data  
All technical data relate to an ambient temperature of +25°C  
Capacitance Range  
Capacitance Tolerance  
Rated Voltage (VR)  
Category Voltage (VC)  
Surge Voltage (VS)  
Surge Voltage (VS)  
Operating Temperature Range  
Reliability  
0.1µF to 220µF  
20ꢀ; 10ꢀ  
Ϲ +85°C:  
Ϲ +125°C:  
Ϲ +85°C:  
Ϲ +125°C:  
4
6.3  
4
8
10  
7
13  
8
15  
10  
20  
12  
20  
13  
26  
16  
25  
17  
33  
20  
35  
23  
46  
28  
50  
33  
65  
40  
2.7  
5.2  
3.2  
5
-55°C to +125°C  
1ꢀ per 1000h at 85°C with a 0.1/V series impedance, 60ꢀ confidence level  
Qualification  
MIL-C-55365/4  
18  
TAZ Series  
HOW TO ORDER  
TAZ  
D
335  
M
015  
C
R
SZ*  
0000*  
(Professional Grade)  
Case Code  
See table on  
page 18  
Capacitance  
Code  
Tolerance  
J= 5ꢀ  
K= 10ꢀ  
M= 20ꢀ  
Rated DC  
Voltage  
Lead  
Configuration  
C = Chip  
X = Extended  
Range  
Packaging Manufacturing Termination  
Type  
Routing and  
Failure Rate*  
S = Standard  
Z = Not  
Finish*  
0000 = Fused  
Solder  
Consult  
page 44  
for details  
pF code:  
1st two digits  
represent  
significant  
figures, 3rd  
digit represents  
multiplier  
(number of  
zeros to follow)  
Plated  
0800 = Hot  
Solder  
applicable  
Dipped  
0900 = Gold  
Plated  
*Not applicable to European orders (other endings are  
assigned by the factory for special customer requirements)  
MARKING  
The positive end of body has videcon readable polarity bar  
marking along with the capacitance code and rated work  
voltage:  
TYPICAL LEAD FRAME MATERIAL  
THICKNESSES  
Lead Frame: Alloy 194  
Thickness: 0.005 0.0002"  
• Polarity Stripe (+)  
• Capacitance Code  
• Voltage Rating  
0000 - Fused Solder Plate: (60/40)  
60-135 microinches nickel  
300 75 microinches fused solder  
0800 - Hot Solder Dipped: (60/40)  
50-100 microinches nickel  
The electrical and mechanical parameters shown on the  
TAZ series are general.  
Min. 60 microinches solder  
0900 - Gold Plated:  
For specific circuit applications, special screening  
is available. Please contact AVX if you have special  
electrical or mechanical requirements.  
35-100 microinches nickel  
50-75 microinches gold  
CAPACITANCE AND VOLTAGE RANGE (LETTER DENOTES CASE CODE)  
Capacitance  
Rated voltage (VR) at 85°C  
µF Code  
4V  
6V  
10V  
15V  
20V  
25V  
35V  
50V  
0.1  
104  
A
A
B
0.15  
0.22  
154  
224  
A
B
0.33  
0.47  
0.68  
334  
474  
684  
A
B
B
A
A
B
A
D
1.0  
1.5  
2.2  
3.3  
4.7  
6.8  
10  
15  
22  
33  
47  
68  
100  
150  
220  
105  
155  
225  
335  
475  
685  
106  
156  
226  
336  
476  
686  
A
A
B
B
B
D
D
E
E
F
F
G
H
A
A
B
A
D
E
B
D
E
D
B
A
B
D
B
D
E
F
F
G
H
B
A
B
D
E
B
D
E
E
D
F
E
G
F
D
F
E
D
D
F
E
F
G
H
H
H
E
D
F
E
F
G
H
F
G
F
E
F
E
G
G
E
F
H
H
G
H
H
G
G
H
G
H
107  
157  
227  
H
G
H
NOTE: TAZ Standard Range ratings are also available as CWR09 Military parts, see page 22.  
= Standard Range  
= Extended Range  
19  
TAZ Series  
Standard Range  
RATINGS & PART NUMBER REFERENCE (Standard Range and Special Case Sizes Only)  
AVX  
Part No.  
Case Capacitance  
Size µF  
DCL  
(µA)  
Max.  
DF  
%
Max.  
ESR  
max. ()  
@ 100 kHz  
AVX  
Part No.  
Case Capacitance  
Size µF  
DCL  
(µA)  
Max.  
DF  
%
Max.  
ESR  
max. ()  
@ 100 kHz  
4 volt @ 85°C (2.5 volt @ 125°C)  
25 volt @ 85°C (16 volt @ 125°C)  
TAZA225(‡)004C*  
TAZB475(‡)004C*  
TAZD106(‡)004C*  
TAZE156(‡)004C*  
TAZF336(‡)004C*  
TAZG686(‡)004C*  
TAZH107(‡)004C*  
A
B
D
E
R
F
2.2  
4.7  
10.0  
15.0  
33.0  
68.0  
100.0  
1.0  
1.0  
1.0  
1.0  
2.0  
3.0  
4.0  
6
6
6
8
8
10  
10  
20.0  
10.0  
10.0  
5.0  
4.0  
2.0  
TAZA334(‡)025C*  
TAZB684(‡)025C*  
TAZD155(‡)025C*  
TAZE225(‡)025C*  
TAZF475(‡)025C*  
TAZG685(‡)025C*  
TAZG106(‡)025C*  
TAZH156(‡)025C*  
A
B
D
E
0.33  
0.68  
1.5  
2.2  
4.7  
6.8  
10.0  
15.0  
1.0  
1.0  
1.0  
1.0  
2.0  
2.0  
3.0  
4.0  
6
6
6
6
6
6
6
6
25.0  
15.0  
10.0  
8.0  
6.0  
4.0  
F
G
G
H
H
1.0  
3.0  
2.0  
6.3 volt @ 85°C (4 volt @ 125°C)  
35 volt @ 85°C (23 volt @ 125°C)  
TAZA155(‡)006C*  
TAZB335(‡)006C*  
TAZD685(‡)006C*  
TAZE106(‡)006C*  
TAZF226(‡)006C*  
TAZG476(‡)006C*  
TAZH686(‡)006C*  
A
B
D
E
F
G
H
1.5  
3.3  
6.8  
10.0  
22.0  
47.0  
68.0  
1.0  
1.0  
1.0  
1.0  
2.0  
3.0  
4.0  
6
6
6
6
8
10  
10  
12.0  
12.0  
12.0  
6.0  
4.0  
2.0  
TAZA224(‡)035C*  
TAZB474(‡)035C*  
TAZD105(‡)035C*  
TAZE155(‡)035C*  
TAZF335(‡)035C*  
TAZG475(‡)035C*  
TAZH685(‡)035C*  
A
B
D
E
F
G
H
0.22  
0.47  
1.0  
1.5  
3.3  
4.7  
6.8  
1.0  
1.0  
1.0  
1.0  
1.0  
2.0  
3.0  
6
6
6
6
6
6
6
25.0  
20.0  
12.0  
6.0  
6.0  
3.0  
2.0  
3.0  
10 volt @ 85°C (6.3 volt @ 125°C)  
50 volt @ 85°C (33 volt @ 125°C)  
TAZA105(‡)010C*  
TAZB225(‡)010C*  
TAZD475(‡)010C*  
TAZE685(‡)010C*  
TAZF156(‡)010C*  
TAZG336(‡)010C*  
TAZH476(‡)010C*  
A
B
D
E
F
G
H
1.0  
2.2  
4.7  
1.0  
1.0  
1.0  
1.0  
2.0  
3.0  
5.0  
6
6
6
6
6
10  
10  
18.0  
12.0  
10.0  
4.0  
3.0  
3.0  
TAZA104(‡)050C*  
TAZA154(‡)050C*  
TAZB224(‡)050C*  
TAZB334(‡)050C*  
TAZD684(‡)050C*  
TAZE105(‡)050C*  
TAZF155(‡)050C*  
TAZF225(‡)050C*  
TAZG335(‡)050C*  
TAZH475(‡)050C*  
A
A
B
B
D
E
F
F
G
H
0.10  
0.15  
0.22  
0.33  
0.68  
1.0  
1.5  
2.2  
3.3  
4.7  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
2.0  
2.0  
3.0  
6
6
6
6
6
6
6
6
6
6
30.0  
30.0  
25.0  
25.0  
20.0  
12.0  
10.0  
6.0  
6.8  
15.0  
33.0  
47.0  
2.0  
15 volt @ 85°C (10 volt @ 125°C)  
4.0  
2.0  
TAZA684(‡)015C*  
TAZB155(‡)015C*  
TAZD335(‡)015C*  
TAZE475(‡)015C*  
TAZF106(‡)015C*  
TAZG226(‡)015C*  
TAZH336(‡)015C*  
A
B
D
E
F
G
H
0.68  
1.5  
3.3  
4.7  
10.0  
22.0  
33.0  
1.0  
1.0  
1.0  
1.0  
2.0  
4.0  
5.0  
6
6
6
6
6
8
8
22.0  
15.0  
10.0  
6.0  
5.0  
3.0  
2.0  
20 volt @ 85°C (13 volt @ 125°C)  
TAZA474(‡)020C*  
TAZB684(‡)020C*  
TAZB105(‡)020C*  
TAZD225(‡)020C*  
TAZE335(‡)020C*  
TAZF685(‡)020C*  
TAZG156(‡)020C*  
TAZH226(‡)020C*  
A
B
B
D
E
F
G
H
0.47  
0.68  
1.0  
2.2  
3.3  
6.8  
15.0  
22.0  
1.0  
1.0  
1.0  
1.0  
1.0  
2.0  
3.0  
4.0  
6
6
6
6
6
6
6
6
20.0  
15.0  
15.0  
10.0  
8.0  
5.0  
3.0  
2.0  
All technical data relates to an ambient temperature of +25°C. Capacitance and  
DF are measured at 120 Hz, 0.5V RMS with a maximum DC bias of 2.2 volts.  
DCL is measured at rated voltage after 5 minutes.  
The electrical and mechanical parameters shown on the TAZ series are  
general. For special circuit requirements, application specific testing is  
available. Please contact your local AVX sales office if you have special  
electrical or mechanical requirements.  
‡ Insert J for 5% tolerance, K for 10%, M for 20%  
DCL, DF and ESR limits are general information only. Contact AVX if your  
application requires lower or tighter limits.  
* Insert letter for packing option. See ordering information on page 19.  
20  
TAZ Series  
Extended Range  
RATINGS & PART NUMBER REFERENCE  
AVX  
Case Capacitance  
DCL  
(µA)  
DF  
%
ESR  
AVX  
Part No.  
Case Capacitance  
DCL  
(µA)  
Max.  
DF  
%
Max.  
ESR  
max. ()  
@ 100 kHz  
Part No.  
Size  
µF  
max. ()  
@ 100 kHz  
Size  
µF  
Max.  
Max.  
4 volt  
15 volt  
TAZA475(‡)004X*  
TAZB106(‡)004X*  
TAZD226(‡)004X*  
TAZE336(‡)004X*  
TAZF107(‡)004X*  
TAZG157(‡)004X*  
A
B
D
E
F
4.7  
10  
22  
33  
100  
150  
1
1
1
2
4
6
6
6
8
8
10  
10  
20  
10  
10  
5
4
2
TAZA105(‡)015X*  
TAZB335(‡)015X*  
TAZD475(‡)015X*  
TAZE106(‡)015X*  
TAZF226(‡)015X*  
TAZH686(‡)015X*  
A
B
D
E
F
1
3.3  
4.7  
10  
22  
68  
1
1
1
2
3
6
6
6
6
6
8
22  
12  
10  
6
5
2
G
H
10  
6 volt  
20 volt  
TAZA335(‡)006X*  
TAZB685(‡)006X*  
TAZD156(‡)006X*  
TAZE226(‡)006X*  
TAZF686(‡)006X*  
TAZG107(‡)006X*  
TAZH227(‡)006X*  
A
B
D
E
F
G
H
3.3  
6.8  
15  
22  
68  
100  
220  
1
1
1
2
4
6
10  
6
6
6
6
8
10  
10  
18  
12  
10  
4
4
2
TAZA684(‡)020X*  
TAZB225(‡)020X*  
TAZD335(‡)020X*  
TAZE475(‡)020X*  
TAZE685(‡)020X*  
TAZF156(‡)020X*  
TAZG226(‡)020X*  
TAZH476(‡)020X*  
A
B
D
E
E
F
0.68  
2.2  
3.3  
4.7  
6.8  
15  
22  
47  
1
1
1
1
2
3
4
10  
6
6
6
6
6
6
8
8
22  
12  
10  
8
8
4
1
G
H
3
2
10 volt  
25 volt  
TAZA225(‡)010X*  
TAZB475(‡)010X*  
TAZD685(‡)010X*  
TAZD106(‡)010X*  
TAZE156(‡)010X*  
TAZE226(‡)010X*  
TAZF476(‡)010X*  
TAZG686(‡)010X*  
TAZH107(‡)010X*  
A
B
D
D
E
E
F
2.2  
4.7  
6.8  
10  
15  
22  
47  
68  
100  
1
1
1
1
2
3
4
6
10  
6
6
6
6
6
6
8
10  
10  
20  
12  
8
10  
4
4
3
TAZB105(‡)025X*  
TAZD225(‡)025X*  
TAZE335(‡)025X*  
TAZF685(‡)025X*  
TAZH226(‡)025X*  
B
D
E
F
1
1
1
1
2
6
6
6
6
6
8
12  
10  
8
6
2
2.2  
3.3  
6.8  
H
22  
35 volt  
G
H
2
1
TAZH106(‡)035X*  
H
10  
4
8
2
‡ Insert J for 5% tolerance, K for 10%, M for 20%  
The electrical and mechanical parameters shown on the TAZ series are  
general.  
* Insert letter for packing option. See ordering information on page 19.  
For special circuit requirements, application specific testing is available.  
Please contact your local AVX sales office if you have special electrical or  
mechanical requirements.  
All technical data relates to an ambient temperature of +25°C. Capacitance and  
DF are measured at 120 Hz, 0.5V RMS with a maximum DC bias of 2.2 volts.  
DCL is measured at rated voltage after 5 minutes.  
DCL, DF and ESR limits are general information only. Contact AVX if your  
application requires lower or tighter limits.  
NOTE: Voltage ratings are minimum values. We reserve the right to supply  
higher voltage ratings in the same case size, to the same reliability  
standards.  
21  
CWR09 Series  
MIL-C-55365/4  
MARKING  
Polarity Stripe (+)  
Capacitance Code  
Rated Voltage  
20V  
HOW TO ORDER (MIL-C-55365/4)  
CWR09  
F
B
225  
K
M
A
\TR  
Voltage  
C=4  
D=6  
F=10  
H=15  
J=20  
K=25  
M=35  
N=50  
Termination  
Finish  
B=Gold Plated  
C=Hot Solder  
Dipped  
Capacitance  
Code  
Tolerance  
J= 5ꢀ  
K= 10ꢀ  
M= 20ꢀ  
Failure Rate  
Exponential:  
M=1ꢀ/1000  
hours  
P=0.1ꢀ/1000  
hours  
R=0.01ꢀ/1000  
hours  
S=0.001ꢀ/1000  
hours  
Optional Surge  
Current  
A=10 cycles at  
25°C  
B=10 cycles at  
-55°C and  
+85°C  
Packaging  
Bulk  
(Standard if  
nothing is  
specified in  
this position)  
\TR=7"  
Type  
K=Solder Fused  
Tape & Reel  
\TR13=13"  
Tape & Reel  
\W=Waffle Pack  
Weibull:  
B=0.1ꢀ/1000  
hours  
C=0.01ꢀ/1000  
hours  
NOTES: CWR09 is fully interchangeable with CWR06.  
Case Sizes correspond to TAZ A through H.  
Packaging information can be found on page 44.  
22  
CWR09 Series  
MIL-C-55365/4  
ELECTRICAL RATINGS FOR CWR09 CAPACITORS  
MIL-C-55365/4  
Case  
Size  
Rated Capacitance  
DC Leakage (max.)  
Dissipation Factor (max.) Max. ESR  
100 kHz  
Part  
Voltage  
(85°C)  
(volts)  
(nom.)  
(µF)  
Number  
(See Note)  
+25°C  
+85°C  
(µA)  
+125°C  
(µA)  
+25°C +85/125°C -55°C  
+25°C  
Style  
(µA)  
(%)  
(%)  
(%)  
CWR09  
(Ohms)  
CWR09C*225†@᭝ᮀ  
CWR09C*475†@᭝ᮀ  
CWR09C*685†@᭝ᮀ  
CWR09C*106†@᭝ᮀ  
CWR09C*156†@᭝ᮀ  
CWR09C*336†@᭝ᮀ  
CWR09C*686†@᭝ᮀ  
CWR09C*107†@᭝ᮀ  
A
B
C
D
E
F
G
H
4
4
4
4
4
4
4
4
2.2  
4.7  
6.8  
10.0  
15.0  
33.0  
68.0  
100.0  
1.0  
1.0  
1.0  
1.0  
1.0  
2.0  
3.0  
4.0  
10  
10  
10  
10  
10  
20  
30  
40  
12  
12  
12  
12  
12  
24  
36  
48  
6
6
6
8
8
8
10  
10  
8
8
8
8
8
8
10  
12  
12  
12  
12  
8.0  
8.0  
5.5  
4.0  
3.5  
2.2  
1.1  
0.9  
8
10  
10  
12  
12  
CWR09D*155†@᭝ᮀ  
CWR09D*335†@᭝ᮀ  
CWR09D*475†@᭝ᮀ  
CWR09D*685†@᭝ᮀ  
CWR09D*106†@᭝ᮀ  
CWR09D*226†@᭝ᮀ  
CWR09D*476†@᭝ᮀ  
CWR09D*686†@᭝ᮀ  
A
B
C
D
E
F
G
H
6
6
6
6
6
6
6
6
1.5  
3.3  
4.7  
1.0  
1.0  
1.0  
1.0  
1.0  
2.0  
3.0  
4.0  
10  
10  
10  
10  
10  
20  
30  
40  
12  
12  
12  
12  
12  
24  
36  
48  
6
6
6
6
8
8
10  
10  
8
8
8
8
8
8
8.0  
8.0  
5.5  
4.5  
3.5  
2.2  
1.1  
0.9  
6.8  
8
8
10.0  
22.0  
47.0  
68.0  
10  
10  
12  
12  
12  
12  
12  
12  
CWR09F*105†@᭝ᮀ  
CWR09F*225†@᭝ᮀ  
CWR09F*335†@᭝ᮀ  
CWR09F*475†@᭝ᮀ  
CWR09F*685†@᭝ᮀ  
CWR09F*156†@᭝ᮀ  
CWR09F*336†@᭝ᮀ  
CWR09F*476†@᭝ᮀ  
A
B
C
D
E
F
G
H
10  
10  
10  
10  
10  
10  
10  
10  
1.0  
2.2  
3.3  
4.7  
6.8  
15.0  
33.0  
47.0  
1.0  
1.0  
1.0  
1.0  
1.0  
2.0  
3.0  
5.0  
10  
10  
10  
10  
10  
20  
30  
50  
12  
12  
12  
12  
12  
24  
36  
60  
6
6
6
6
6
8
10  
10  
8
8
8
8
8
8
12  
12  
8
8
8
8
8
10  
12  
12  
10.0  
8.0  
5.5  
4.5  
3.5  
2.5  
1.1  
0.9  
CWR09H*684†@᭝ᮀ  
CWR09H*155†@᭝ᮀ  
CWR09H*225†@᭝ᮀ  
CWR09H*335†@᭝ᮀ  
CWR09H*475†@᭝ᮀ  
CWR09H*106†@᭝ᮀ  
CWR09H*226†@᭝ᮀ  
CWR09H*336†@᭝ᮀ  
A
B
C
D
E
F
G
H
15  
15  
15  
15  
15  
15  
15  
15  
0.68  
1.5  
2.2  
3.3  
4.7  
10.0  
22.0  
33.0  
1.0  
1.0  
1.0  
1.0  
1.0  
2.0  
4.0  
5.0  
10  
10  
10  
10  
10  
20  
40  
50  
12  
12  
12  
12  
12  
24  
48  
60  
6
6
6
6
6
6
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
10  
10  
12.0  
8.0  
5.5  
5.0  
4.0  
2.5  
1.1  
0.9  
CWR09J*474†@᭝ᮀ  
CWR09J*684†@᭝ᮀ  
CWR09J*105†@᭝ᮀ  
CWR09J*155†@᭝ᮀ  
CWR09J*225†@᭝ᮀ  
CWR09J*335†@᭝ᮀ  
CWR09J*685†@᭝ᮀ  
CWR09J*156†@᭝ᮀ  
CWR09J*226†@᭝ᮀ  
A
B
B
C
D
E
F
G
H
20  
20  
20  
20  
20  
20  
20  
20  
20  
0.47  
0.68  
1.0  
1.5  
2.2  
3.3  
6.8  
15.0  
22.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
2.0  
3.0  
4.0  
10  
10  
10  
10  
10  
10  
20  
30  
40  
12  
12  
12  
12  
12  
12  
24  
36  
48  
6
6
6
6
6
6
6
6
6
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
14.0  
10.0  
12.0  
6.0  
5.0  
4.0  
2.4  
1.1  
0.9  
* = Termination Finish  
B = Gold Plated  
C = Hot Solder Dipped  
K = Solder Fused  
† = Tolerance Code  
J = 5%  
@ = Failure Rate Level  
Exponential:  
M = 1.0% per 1000 hours  
P = 0.1% per 1000 hours  
R = 0.01% per 1000 hours  
S = 0.001% per 1000 hours  
= Optional Surge Current  
A = 10 cycles at 25°C  
B = 10 cycles at -55°C  
and +85°C  
= Packaging  
Bulk Standard  
\TR=7" Tape & Reel  
\TR13=13" Tape & Reel  
\W=Waffle Pack  
K = 10%  
M = 20%  
Weibull:  
The C case has limited availability. Where  
B = 0.1% per 1000 hours  
C = 0.01% per 1000 hours  
possible D case should be substituted.  
23  
CWR09 Series  
MIL-C-55365/4  
ELECTRICAL RATINGS FOR CWR09 CAPACITORS  
MIL-C-55365/4  
Case  
Sizeଙ  
Rated Capacitance  
DC Leakage (max.)  
Dissipation Factor (max.) Max. ESR  
100 kHz  
Part  
Voltage  
(85°C)  
(volts)  
(nom.)  
(µF)  
Number  
+25°C  
(µA)  
+85°C  
(µA)  
+125°C  
(µA)  
+25°C +85/125°C -55°C  
+25°C  
Style  
(See Note)  
(%)  
(%)  
(%)  
CWR09  
(Ohms)  
CWR09K*334†@᭝ᮀ  
CWR09K*684†@᭝ᮀ  
CWR09K*105†@᭝ᮀ  
CWR09K*155†@᭝ᮀ  
CWR09K*225†@᭝ᮀ  
CWR09K*475†@᭝ᮀ  
CWR09K*685†@᭝ᮀ  
CWR09K*106†@᭝ᮀ  
CWR09K*156†@᭝ᮀ  
A
B
C
D
E
25  
25  
25  
25  
25  
25  
25  
25  
25  
0.33  
0.68  
1.0  
1.5  
2.2  
4.7  
6.8  
10.0  
15.0  
1.0  
1.0  
1.0  
1.0  
1.0  
2.0  
2.0  
3.0  
4.0  
10  
10  
10  
10  
10  
20  
20  
30  
40  
12  
12  
12  
12  
12  
24  
24  
36  
48  
6
6
6
6
6
6
6
6
6
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
15.0  
7.5  
6.5  
6.5  
3.5  
2.5  
1.2  
1.4  
1.0  
F
G
G
H
CWR09M*224†@᭝ᮀ  
CWR09M*474†@᭝ᮀ  
CWR09M*684†@᭝ᮀ  
CWR09M*105†@᭝ᮀ  
CWR09M*155†@᭝ᮀ  
CWR09M*335†@᭝ᮀ  
CWR09M*475†@᭝ᮀ  
CWR09M*685†@᭝ᮀ  
A
B
C
D
E
F
G
H
35  
35  
35  
35  
35  
35  
35  
35  
0.22  
0.47  
0.68  
1.0  
1.5  
3.3  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
2.0  
3.0  
10  
10  
10  
10  
10  
10  
20  
30  
12  
12  
12  
12  
12  
12  
24  
36  
6
6
6
6
6
6
6
6
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
18.0  
10.0  
8.0  
6.5  
4.5  
2.5  
1.5  
1.3  
4.7  
6.8  
CWR09N*104†@᭝ᮀ  
CWR09N*154†@᭝ᮀ  
CWR09N*224†@᭝ᮀ  
CWR09N*334†@᭝ᮀ  
CWR09N*474†@᭝ᮀ  
CWR09N*684†@᭝ᮀ  
CWR09N*105†@᭝ᮀ  
CWR09N*155†@᭝ᮀ  
CWR09N*225†@᭝ᮀ  
CWR09N*335†@᭝ᮀ  
CWR09N*475†@᭝ᮀ  
A
A
B
B
C
D
E
F
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
50  
0.10  
0.15  
0.22  
0.33  
0.47  
0.68  
1.0  
1.5  
2.2  
3.3  
4.7  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
2.0  
2.0  
3.0  
10  
10  
10  
10  
10  
10  
10  
10  
20  
20  
30  
12  
12  
12  
12  
12  
12  
12  
12  
24  
24  
36  
6
6
6
6
6
6
6
6
6
6
6
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
22.0  
17.0  
14.0  
12.0  
8.0  
7.0  
6.0  
4.0  
2.5  
F
G
H
2.0  
1.5  
NOTE: To complete the MIL-C-55365/4 Part Number, additional information  
Contact your local AVX sales office for latest qualification status.  
must be added:  
* = Termination Finish  
B = Gold Plated  
C = Hot Solder Dipped  
K = Solder Fused  
† = Tolerance Code  
J = 5%  
@ = Failure Rate Level  
Exponential:  
M = 1.0% per 1000 hours  
P = 0.1% per 1000 hours  
R = 0.01% per 1000 hours  
S = 0.001% per 1000 hours  
= Optional Surge Current  
A = 10 cycles at 25°C  
B = 10 cycles at -55°C  
and +85°C  
= Packaging  
Bulk Standard  
\TR=7" Tape & Reel  
\TR13=13" Tape & Reel  
\W=Waffle Pack  
K = 10%  
M = 20%  
Weibull:  
The C case has limited availability. Where  
B = 0.1% per 1000 hours  
C = 0.01% per 1000 hours  
possible D case should be substituted.  
24  
CWR11 Style  
MIL-C-55365/8  
MARKING  
Polarity Stripe  
“J” for JAN Brand  
Capacitance Code  
Rated Voltage  
(with manufacturer’s ID)  
CASE DIMENSIONS: millimeters (inches)  
Case  
Code  
W
L
H
W2  
P
H2  
(min)  
0.1 ( 0.004)  
0.3 ( 0.012)  
1.6 0.2  
(0.063 0.008)  
3.2 0.2  
(0.126 0.008)  
1.6 0.2  
(0.063 0.008)  
1.2  
(0.047)  
0.8  
(0.031)  
0.7  
(0.028)  
A
B
C
D
2.8 0.2  
(0.110 0.008)  
3.5 0.2  
(0.138 0.008)  
1.9 0.2  
(0.075 0.008)  
2.2  
(0.087)  
0.8  
(0.031)  
0.7  
(0.028)  
3.2 0.3  
(0.126 0.012)  
6.0 0.3  
(0.236 0.012)  
2.5 0.3  
(0.098 0.012)  
2.2  
(0.087)  
1.3  
(0.0.51)  
1.0  
(0.039)  
4.3 0.3  
(0.169 0.012)  
7.3 0.3  
(0.287 0.012)  
2.8 0.3  
(0.110 0.012)  
2.4  
(0.094)  
1.3  
(0.0.51)  
1.0  
(0.039)  
HOW TO ORDER (MIL-C-55365/8)  
CWR11  
F
A
225  
K
M
A
\TR  
Voltage  
C=4  
D=6  
F=10  
H=15  
J=20  
K=25  
M=35  
N=50  
Termination  
Finish  
B=Gold Plated  
C=Hot Solder  
Dipped  
Capacitance  
Code  
Tolerance  
J= 5ꢀ  
K= 10ꢀ  
M= 20ꢀ  
Failure Rate  
Exponential:  
M=1ꢀ/1000  
hours  
P=0.1ꢀ/1000  
hours  
R=0.01ꢀ/1000  
hours  
S=0.001ꢀ/1000  
hours  
Optional Surge  
Current  
A=10 cycles at  
25°C  
B=10 cycles at  
-55°C and  
+85°C  
Packaging  
Bulk  
(Standard if  
nothing is  
specified in  
this position)  
\TR=7"  
Type  
K=Solder Fused  
Tape & Reel  
\TR13=13"  
Tape & Reel  
\W=Waffle Pack  
Weibull:  
B=0.1ꢀ/1000  
hours  
C=0.01ꢀ/1000  
hours  
D=0.001ꢀ/1000  
hours  
25  
CWR11 Style  
MIL-C-55365/8  
ELECTRICAL RATINGS FOR CWR11 CAPACITORS  
MIL-C-55365/8  
Part  
Case  
Size  
Rated Capacitance  
DC Leakage (max.)  
Dissipation Factor (max.)  
+25°C +85/125°C -55°C  
Max.  
ESR  
100 kHz  
()  
Voltage  
(85°C)  
(volts)  
(nom.)  
(µF)  
Number  
+25°C  
+85°C  
(µA)  
+125°C  
(µA)  
(See Note)  
(µA)  
(%)  
(%)  
(%)  
CWR11D*155†@᭝ᮀ  
CWR11D*225†@᭝ᮀ  
CWR11D*335†@᭝ᮀ  
CWR11D*475†@᭝ᮀ  
CWR11D*685†@᭝ᮀ  
CWR11D*106†@᭝ᮀ  
CWR11D*156†@᭝ᮀ  
CWR11D*226†@᭝ᮀ  
CWR11D*476†@᭝ᮀ  
A
A
A
B
B
B
C
C
D
6
6
6
6
6
6
6
6
6
1.5  
2.2  
3.3  
4.7  
6.8  
10.0  
15.0  
22.0  
47.0  
0.5  
0.5  
0.5  
0.5  
0.5  
0.6  
0.9  
1.4  
2.8  
5.0  
5.0  
5.0  
5.0  
5.0  
6.0  
9.0  
14.0  
28.0  
6.0  
6.0  
6.0  
6.0  
6.0  
6
6
6
6
6
6
6
6
6
9
6
9
9
6
9
6
9
6
9
9
9
9
9
9
9
9
9
8.0  
8.0  
8.0  
5.5  
4.5  
3.5  
3.0  
2.2  
1.1  
7.2  
10.8  
16.8  
33.6  
CWR11F*105†@᭝ᮀ  
CWR11F*155†@᭝ᮀ  
CWR11F*225†@᭝ᮀ  
CWR11F*335†@᭝ᮀ  
CWR11F*475†@᭝ᮀ  
CWR11F*685†@᭝ᮀ  
CWR11F*156†@᭝ᮀ  
CWR11F*336†@᭝ᮀ  
A
A
A
B
B
B
C
D
10  
10  
10  
10  
10  
10  
10  
10  
1.0  
1.5  
2.2  
3.3  
4.7  
6.8  
15.0  
33.0  
0.5  
0.5  
0.5  
0.5  
0.5  
0.7  
1.5  
3.3  
5.0  
5.0  
5.0  
5.0  
5.0  
7.0  
15.0  
33.0  
6.0  
6.0  
6.0  
6.0  
6.0  
8.4  
18.0  
39.6  
4
6
6
6
6
6
6
6
6
6
9
9
9
9
6
6
6
9
9
9
9
9
9
9
10.0  
8.0  
8.0  
5.5  
4.5  
3.5  
2.5  
1.1  
CWR11H*684†@᭝ᮀ  
CWR11H*105†@᭝ᮀ  
CWR11H*155†@᭝ᮀ  
CWR11H*225†@᭝ᮀ  
CWR11H*335†@᭝ᮀ  
CWR11H*475†@᭝ᮀ  
CWR11H*106†@᭝ᮀ  
CWR11H*226†@᭝ᮀ  
A
A
A
B
B
B
C
D
15  
15  
15  
15  
15  
15  
15  
15  
0.68  
1.0  
1.5  
2.2  
3.3  
4.7  
10.0  
22.0  
0.5  
0.5  
0.5  
0.5  
0.5  
0.7  
1.6  
3.3  
5.0  
5.0  
5.0  
5.0  
5.0  
7.0  
16.0  
33.0  
6.0  
6.0  
6.0  
6.0  
6.0  
8.4  
19.2  
39.6  
4
4
6
6
6
6
6
6
6
6
9
9
8
9
8
8
6
9
9
9
9
9
9
9
12.0  
10.0  
8.0  
5.5  
5.0  
4.0  
2.5  
1.1  
CWR11J*474†@᭝ᮀ  
CWR11J*684†@᭝ᮀ  
CWR11J*105†@᭝ᮀ  
CWR11J*155†@᭝ᮀ  
CWR11J*225†@᭝ᮀ  
CWR11J*335†@᭝ᮀ  
CWR11J*475†@᭝ᮀ  
CWR11J*685†@᭝ᮀ  
CWR11J*156†@᭝ᮀ  
A
A
A
B
B
B
C
C
D
20  
20  
20  
20  
20  
20  
20  
20  
20  
0.47  
0.68  
1.0  
1.5  
2.2  
3.3  
4.7  
6.8  
15.0  
0.5  
0.5  
0.5  
0.5  
0.5  
0.7  
1.0  
1.4  
3.0  
5.0  
5.0  
5.0  
5.0  
5.0  
6.0  
6.0  
6.0  
6.0  
6.0  
4
4
4
6
6
6
6
6
6
6
6
6
9
8
9
8
9
8
6
6
6
9
9
9
9
9
9
14.0  
12.0  
10.0  
6.0  
5.0  
4.0  
3.0  
2.4  
1.1  
7.0  
8.4  
10.0  
14.0  
30.0  
12.0  
16.8  
36.0  
NOTE: To complete the MIL-C-55365/8 Part Number, additional information  
Contact your local AVX sales office for latest qualification status.  
must be added:  
* = Termination Finish  
B = Gold Plated  
C = Hot Solder Dipped  
K = Solder Fused  
† = Tolerance Code  
J = 5%  
@ = Failure Rate Level  
Exponential:  
M = 1.0% per 1000 hours  
P = 0.1% per 1000 hours  
R = 0.01% per 1000 hours  
S = 0.001% per 1000 hours  
= Optional Surge Current  
A = 10 cycles at 25°C  
B = 10 cycles at -55°C  
and +85°C  
= Packaging  
Bulk Standard  
\TR=7" Tape & Reel  
\TR13=13" Tape & Reel  
\W=Waffle Pack  
K = 10%  
M = 20%  
Weibull:  
B = 0.1% per 1000 hours  
C = 0.01% per 1000 hours  
D = 0.001% Per 1000 hours  
26  
CWR11 Style  
MIL-C-55365/8  
ELECTRICAL RATINGS FOR CWR11 CAPACITORS  
MIL-C-55365/8  
Part  
Case  
Size  
Rated Capacitance  
DC Leakage (max.)  
Dissipation Factor (max.)  
+25°C +85/125°C -55°C  
Max.  
ESR  
100 kHz  
()  
Voltage  
(85°C)  
(volts)  
(nom.)  
(µF)  
Number  
+25°C  
+85°C  
(µA)  
+125°C  
(µA)  
(See Note)  
(µA)  
(%)  
(%)  
(%)  
CWR11K*334†@᭝ᮀ  
CWR11K*474†@᭝ᮀ  
CWR11K*684†@᭝ᮀ  
CWR11K*105†@᭝ᮀ  
CWR11K*155†@᭝ᮀ  
CWR11K*225†@᭝ᮀ  
CWR11K*335†@᭝ᮀ  
CWR11K*475†@᭝ᮀ  
CWR11K*685†@᭝ᮀ  
CWR11K*106†@᭝ᮀ  
A
A
B
B
B
C
C
C
D
D
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
0.33  
0.47  
0.68  
1.0  
1.5  
2.2  
3.3  
4.7  
6.8  
10.0  
0.5  
0.5  
0.5  
0.5  
0.5  
0.6  
0.9  
1.2  
1.7  
2.5  
5.0  
5.0  
5.0  
5.0  
5.0  
6.0  
9.0  
12.0  
17.0  
25.0  
6.0  
6.0  
6.0  
6.0  
6.0  
4
4
4
4
6
6
6
6
6
6
6
6
6
6
8
9
8
9
9
8
6
6
6
6
9
9
9
9
9
9
15.0  
14.0  
7.5  
6.5  
6.5  
3.5  
3.5  
2.5  
1.4  
1.2  
7.2  
10.8  
14.4  
20.4  
30.0  
CWR11M*104†@᭝ᮀ  
CWR11M*154†@᭝ᮀ  
CWR11M*224†@᭝ᮀ  
CWR11M*334†@᭝ᮀ  
CWR11M*474†@᭝ᮀ  
CWR11M*684†@᭝ᮀ  
CWR11M*105†@᭝ᮀ  
CWR11M*155†@᭝ᮀ  
CWR11M*225†@᭝ᮀ  
CWR11M*335†@᭝ᮀ  
CWR11M*475†@᭝ᮀ  
A
A
A
A
B
B
B
C
C
C
D
35  
35  
35  
35  
35  
35  
35  
35  
35  
35  
35  
0.10  
0.15  
0.22  
0.33  
0.47  
0.68  
1.0  
1.5  
2.2  
3.3  
4.7  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.8  
1.2  
1.7  
5.0  
5.0  
5.0  
5.0  
5.0  
5.0  
5.0  
5.0  
8.0  
6.0  
6.0  
6.0  
6.0  
6.0  
6.0  
6.0  
6.0  
9.6  
4
4
4
4
4
4
4
6
6
6
6
6
6
6
6
6
6
6
8
8
8
8
6
6
6
6
6
6
6
9
9
9
9
24.0  
21.0  
18.0  
15.0  
10.0  
8.0  
6.5  
4.5  
3.5  
2.5  
12.0  
17.0  
14.4  
20.4  
1.5  
CWR11N*104†@᭝ᮀ  
CWR11N*154†@᭝ᮀ  
CWR11N*224†@᭝ᮀ  
CWR11N*334†@᭝ᮀ  
CWR11N*474†@᭝ᮀ  
CWR11N*684†@᭝ᮀ  
CWR11N*105†@᭝ᮀ  
CWR11N*155†@᭝ᮀ  
CWR11N*225†@᭝ᮀ  
A
B
B
B
C
C
C
D
D
50  
50  
50  
50  
50  
50  
50  
50  
50  
0.10  
0.15  
0.22  
0.33  
0.47  
0.68  
1.0  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.8  
1.1  
5.0  
5.0  
5.0  
5.0  
5.0  
5.0  
5.0  
8.0  
11.0  
6.0  
6.0  
6.0  
6.0  
6.0  
6.0  
6.0  
9.6  
13.2  
4
4
4
4
4
6
6
6
6
6
6
6
6
6
6
6
8
8
6
6
6
6
6
6
6
9
9
22.0  
17.0  
14.0  
12.0  
8.0  
7.0  
6.0  
4.0  
2.5  
1.5  
2.2  
NOTE: To complete the MIL-C-55365/8 Part Number, additional information  
Contact your local AVX sales office for latest qualification status.  
must be added:  
* = Termination Finish  
Designator:  
B = Gold Plated  
C = Hot Solder Dipped  
K = Solder Fused  
† = Tolerance Code  
J = 5%  
@ = Failure Rate Level  
Exponential:  
M = 1.0% per 1000 hours  
P = 0.1% per 1000 hours  
R = 0.01% per 1000 hours  
S = 0.001% per 1000 hours  
= Optional Surge Current  
A = 10 cycles at 25°C  
B = 10 cycles at -55°C  
and +85°C  
= Packaging  
Bulk Standard  
\TR=7" Tape & Reel  
\TR13=13" Tape & Reel  
\W=Waffle Pack  
K = 10%  
M = 20%  
Weibull:  
B = 0.1% per 1000 hours  
C = 0.01% per 1000 hours  
D = 0.001% per 1000 hours  
27  
Technical Summary and  
Application Guidelines  
INTRODUCTION  
Tantalum capacitors are manufactured from a powder of  
pure tantalum metal. The typical particle size is between 2  
and 10 µm.  
Rearranging this equation gives:  
C d  
A =  
␧ ␧  
o r  
thus for a 22µF/25V capacitor the surface area is 150 square  
centimeters, or nearly half the size of this page.  
The dielectric is then formed over all the tantalum surfaces  
by the electrochemical process of anodization. To achieve  
this, the ‘pellet’ is dipped into a very weak solution of phos-  
phoric acid.  
The dielectric thickness is controlled by the voltage applied  
during the forming process. Initially the power supply is kept  
in a constant current mode until the correct thickness of  
dielectric has been reached (that is the voltage reaches the  
‘forming voltage’), it then switches to constant voltage mode  
and the current decays to close to zero.  
4000µFV  
10000µFV  
20000µFV  
Figure 1.  
The powder is compressed under high pressure around a  
Tantalum wire to form a ‘pellet’ (known as the Riser Wire).  
The riser wire is the anode connection to the capacitor.  
This is subsequently vacuum sintered at high temperature  
(typically 1500 - 2000°C). This helps to drive off any impuri-  
ties within the powder by migration to the surface.  
During sintering the powder becomes a sponge like  
structure with all the particles interconnected in a huge  
lattice.  
This structure is of high mechanical strength and density, but  
is also highly porous giving a large internal surface area  
(see Figure 2).  
Figure 2. Sintered Tantalum  
The larger the surface area the larger the capacitance. Thus  
high CV (capacitance/voltage product) powders, which have  
a low average particle size, are used for low voltage, high  
capacitance parts. The figure below shows typical powders.  
Note the very great difference in particle size between the  
powder CVs.  
The chemical equations describing the process are as  
follows:  
5+  
Anode:  
2 Ta 2 Ta + 10 e  
5
2 Ta + 10 OH-Ta2O5 + 5 H2O  
-
By choosing which powder is used to produce each capac-  
itance/voltage rating the surface area can be controlled.  
Cathode: 10 H2O – 10 e 5H2 + 10 OH  
The oxide forms on the surface of the Tantalum but it also  
grows into the metal. For each unit of oxide two thirds grows  
out and one third grows in. It is for this reason that there is a  
limit on the maximum voltage rating of Tantalum capacitors  
with present technology powders (see Figure 3).  
The following example uses a 22µF 25V capacitor to  
illustrate the point.  
A
␧ ␧  
o r  
C =  
d
where  
and  
is the dielectric constant of free space  
(8.855 x 10 Farads/m)  
The dielectric operates under high electrical stress. Consider  
a 22µF 25V part:  
o
-12  
is the relative dielectric constant for Tantalum  
r
Formation voltage = Formation Ratio x Working Voltage  
Pentoxide (27)  
= 4 x 25  
= 100 Volts  
d is the dielectric thickness in meters  
(for a typical 25V part)  
C is the capacitance in Farads  
A is the surface area in meters  
28  
Technical Summary and  
Application Guidelines  
-9  
The pentoxide (Ta2O5) dielectric grows at a rate of 1.7 x 10  
Tantalum  
m/V  
-9  
Dielectric thickness (d)  
= 100 x 1.7 x 10  
= 0.17 µm  
Dielectric  
Oxide Film  
Electric Field strength  
= Working Voltage / d  
= 147 KV/mm  
Manganese  
Dioxide  
Tantalum  
Figure 4. Manganese Dioxide Layer  
This process is repeated several times through varying  
specific densities of nitrate to build up a thick coat over  
all internal and external surfaces of the ‘pellet’, as shown in  
Figure 4.  
Dielectric  
Oxide Film  
The ‘pellet’ is then dipped into graphite and silver to  
provide a good connection to the Manganese Dioxide  
cathode plate. Electrical contact is established by deposition  
of carbon onto the surface of the cathode. The carbon  
is then coated with a conductive material to facilitate  
connection to the cathode termination. Packaging is carried  
out to meet individual specifications and customer require-  
ments. This manufacturing technique is adhered to for the  
whole range of AVX tantalum capacitors, which can be sub-  
divided into four basic groups: Chip / Resin dipped /  
Rectangular boxed / Axial.  
Figure 3. Dielectric Layer  
The next stage is the production of the cathode plate. This is  
achieved by pyrolysis of Manganese Nitrate into Manganese  
Dioxide.  
The ‘pellet’ is dipped into an aqueous solution of nitrate and  
then baked in an oven at approximately 250°C to produce  
the dioxide coat. The chemical equation is:  
Mn (NO3)2 Mn O2 + 2NO2↑  
Further information on the production of Tantalum  
Capacitors can be obtained from the technical paper "Basic  
Tantalum Technology", by John Gill, available from your local  
AVX representative.  
Manganese  
Dioxide  
Outer  
Silver Layer  
Silver  
Epoxy  
Cathode  
Connection  
Anode  
Graphite  
29  
Technical Summary and  
Application Guidelines  
SECTION 1  
ELECTRICAL CHARACTERISTICS AND EXPLANATION OF TERMS  
1.1 CAPACITANCE  
1.2 VOLTAGE  
1.1.1 Rated capacitance (CR).  
1.2.1 Rated d.c. voltage (VR)  
This is the rated d.c. voltage for continuous operation at  
85°C.  
This is the nominal rated capacitance. For tantalum capaci-  
tors it is measured as the capacitance of the equivalent  
series circuit at 20°C using a measuring bridge supplied by a  
0.5Vpk-pk 120Hz sinusoidal signal, free of harmonics with a  
maximum bias of 2.2Vd.c.  
1.2.2 Category voltage (VC)  
This is the maximum voltage that may be applied continu-  
ously to a capacitor. It is equal to the rated voltage up to  
+85°C, beyond which it is subject to a linear derating, to 2/3  
VR at 125°C.  
1.1.2 Capacitance tolerance.  
This is the permissible variation of the actual value of the  
capacitance from the rated value. For additional reading,  
please consult the AVX technical publication "Capacitance  
Tolerances for Solid Tantalum Capacitors".  
1.1.3 Temperature dependence of capacitance.  
The capacitance of a tantalum capacitor varies with temper-  
ature. This variation itself is dependent to a small extent on  
the rated voltage and capacitor size.  
1.2.3 Surge voltage (VS)  
This is the highest voltage that may be applied to a capaci-  
tor for short periods of time. The surge voltage may be  
applied up to 10 times in an hour for periods of up to 30  
seconds at a time. The surge voltage must not be used as a  
parameter in the design of circuits in which, in the normal  
course of operation, the capacitor is periodically charged  
and discharged.  
1.1.4 Frequency dependence of the capacitance.  
The effective capacitance decreases as frequency increases.  
Beyond 100KHz the capacitance continues to drop until res-  
onance is reached (typically between 0.5 - 5MHz depending  
on the rating). Beyond the resonant frequency the device  
becomes inductive.  
85°C  
125°C  
Rated  
Voltage  
(Vdc.)  
Surge  
Voltage  
(Vdc.)  
Category  
Voltage  
(Vdc.)  
Surge  
Voltage  
(Vdc.)  
4
5.2  
8
2.7  
4
3.2  
5
8
12  
16  
20  
28  
40  
6.3  
10  
16  
20  
25  
35  
50  
13  
20  
26  
32  
46  
65  
7.0  
10  
13  
17  
23  
33  
TAJE227K010  
CAPACITANCE vs. FREQUENCY  
250  
200  
150  
100  
50  
1.2.4 Effect of surges  
The solid Tantalum capacitor has a limited ability to withstand  
voltage and current surges. This is in common with all other  
electrolytic capacitors and is due to the fact that they oper-  
ate under very high electrical stress across the dielectric. For  
example a 25 volt capacitor has an Electrical Field of 147  
KV/mm when operated at rated voltage.  
0
100  
1000  
10000  
100000  
1000000  
Frequency (Hz)  
30  
Technical Summary and  
Application Guidelines  
It is important to ensure that the voltage across the terminals  
of the capacitor never exceeds the specified surge voltage  
rating.  
The peak reverse voltage applied to the capacitor must not  
exceed:  
10ꢀ of the rated d.c. working voltage to a maximum of  
1.0v at 25°C  
Solid tantalum capacitors have a self healing ability provided  
by the Manganese Dioxide semiconducting layer used as the  
negative plate. However, this is limited in low impedance  
applications.  
3ꢀ of the rated d.c. working voltage to a maximum of  
0.5v at 85°C  
1ꢀ of the category d.c. working voltage to a maximum of  
0.1v at 125°C  
In the case of low impedance circuits, the capacitor is likely  
to be stressed by current surges. Derating the capacitor by  
50ꢀ or more increases the reliability of the component. (See  
Figure 2 page 37). The “AVX Recommended Derating Table”  
(page 38) summarizes voltage rating for use on common  
voltage rails, in low impedance applications.  
1.2.6 Superimposed A.C. Voltage (Vr.m.s.) -  
Ripple Voltage.  
This is the maximum r.m.s. alternating voltage; superim-  
posed on a d.c. voltage, that may be applied to a capacitor.  
The sum of the d.c. voltage and peak value of the  
super-imposed a.c. voltage must not exceed the category  
voltage, Vc.  
In circuits which undergo rapid charge or discharge a pro-  
tective resistor of 1/V is recommended. If this is impossible,  
a derating factor of up to 70ꢀ should be used.  
Full details are given in Section 2.  
In such situations a higher voltage may be needed than is  
available as a single capacitor. A series combination should  
be used to increase the working voltage of the equivalent  
capacitor: For example two 22µF 25V parts in series is equiv-  
alent to one 11µF 50V part. For further details refer to J.A.  
Gills paper “Investigation into the effects of connecting  
Tantalum capacitors in series”, available from AVX offices  
worldwide.  
1.2.7 Forming voltage.  
This is the voltage at which the anode oxide is formed. The  
thickness of this oxide layer is proportional to the formation  
voltage for a tantalum capacitor and is a factor in setting the  
rated voltage.  
1.3 DISSIPATION FACTOR AND  
NOTE:  
TANGENT OF LOSS ANGLE (TAN )  
While testing a circuit (e.g. at ICT or functional) it is likely that  
the capacitors will be subjected to large voltage and current  
transients, which will not be seen in normal use. These con-  
ditions should be borne in mind when considering the  
capacitors rated voltage for use. These can be controlled by  
ensuring a correct test resistance is used.  
1.3.1 Dissipation factor (D.F.).  
Dissipation factor is the measurement of the tangent of the  
loss angle (tan ) expressed as a percentage. The measure-  
ment of DF is carried out using a measuring bridge which  
supplies a 0.5Vpk-pk 120Hz sinusoidal signal, free of har-  
monics with a maximum bias of 2.2Vdc. The value of DF is  
temperature and frequency dependent.  
1.2.5 Reverse voltage and Non-Polar operation.  
The values quoted are the maximum levels of reverse voltage  
which should appear on the capacitors at any time. These  
limits are based on the assumption that the capacitors are  
polarized in the correct direction for the majority of their  
working life. They are intended to cover short term reversals  
of polarity such as those occurring during switching tran-  
sients of during a minor portion of an impressed waveform.  
Continuous application of reverse voltage without normal  
polarization will result in a degradation of leakage current. In  
conditions under which continuous application of a reverse  
voltage could occur two similar capacitors should be used in  
a back-to-back configuration with the negative terminations  
connected together. Under most conditions this combination  
will have a capacitance one half of the nominal capacitance  
of either capacitor. Under conditions of isolated pulses or  
during the first few cycles, the capacitance may approach  
the full nominal value.  
Note: For surface mounted products the maximum allowed  
DF values are indicated in the ratings table and it is important  
to note that these are the limits met by the component  
AFTER soldering onto the substrate.  
1.3.2 Tangent of Loss Angle (tan ).  
This is a measurement of the energy loss in the capacitor. It  
is expressed as tan and is the power loss of the capacitor  
divided by its reactive power at a sinusoidal voltage of spec-  
ified frequency. Terms also used are power factor, loss factor  
and dielectric loss. Cos (90 - ) is the true power factor. The  
measurement of tan is carried out using a measuring  
bridge which supplies a 0.5Vpk-pk 120Hz sinusoidal signal,  
free of harmonics with a maximum bias of 2.2Vdc.  
The reverse voltage ratings are designed to cover exception-  
al conditions of small level excursions into incorrect polarity.  
The values quoted are not intended to cover continuous  
reverse operation.  
31  
Technical Summary and  
Application Guidelines  
1.3.3 Frequency dependence of Dissipation Factor.  
Dissipation Factor increases with frequency as shown in the  
typical curves:  
1.4.2 Equivalent Series Resistance, ESR.  
Resistance losses occur in all practical forms of capacitors.  
These are made up from several different mechanisms,  
including resistance in components and contacts, viscous  
forces within the dielectric and defects producing bypass  
current paths. To express the effect of these losses they are  
considered as the ESR of the capacitor. The ESR is frequency  
dependent and can be found by using the relationship;  
DF vs. FREQUENCY  
(TPSE107M016R0100)  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
tan δ  
ESR =  
2πfC  
Where f is the frequency in Hz, and C is the capacitance in  
farads.  
The ESR is measured at 20°C and 100kHz.  
ESR is one of the contributing factors to impedance, and  
at high frequencies (100kHz and above) it becomes the  
dominant factor. Thus ESR and impedance become almost  
identical, impedance being only marginally higher.  
0
100  
1000  
10000  
100000  
Frequency (Hz)  
1.4.3 Frequency dependence of Impedance and ESR.  
ESR and Impedance both increase with decreasing frequency.  
At lower frequencies the values diverge as the extra contri-  
butions to impedance (due to the reactance of the capacitor)  
become more significant. Beyond 1MHz (and beyond the  
resonant point of the capacitor) impedance again increases  
due to the inductance of the capacitor.  
1.3.4 Temperature dependence of Dissipation  
Factor.  
Dissipation factor varies with temperature as the typical  
curves show. For maximum limits please refer to ratings  
tables.  
DF vs. TEMPERATURE  
(TPSE107M016R0100)  
ESR vs. FREQUENCY  
(TPSE107M016R0100)  
1
0.1  
-40  
-20  
0
20  
40  
60  
80  
100  
125  
Temperature (°C)  
0.01  
100  
1000  
10000  
100000  
1000000  
Frequency (Hz)  
1.4 IMPEDANCE, (Z) AND EQUIVALENT  
SERIES RESISTANCE (ESR)  
IMPEDANCE vs. FREQUENCY  
(TPSE107M016R0100)  
10  
1.4.1 Impedance, Z.  
This is the ratio of voltage to current at a specified frequency.  
Three factors contribute to the impedance of a tantalum  
capacitor; the resistance of the semiconductor layer; the  
capacitance value and the inductance of the electrodes  
and leads.  
1
0.1  
At high frequencies the inductance of the leads becomes  
a limiting factor. The temperature and frequency behavior  
of these three factors of impedance determine the behavior  
of the impedance Z. The impedance is measured at 20°C  
and 100kHz.  
0.01  
100  
1000  
10000  
100000  
1000000  
Frequency (Hz)  
32  
Technical Summary and  
Application Guidelines  
1.4.4 Temperature dependence of the Impedance  
1.5.3 Voltage dependence of the leakage current.  
The leakage current drops rapidly below the value corre-  
sponding to the rated voltage VR when reduced voltages are  
applied. The effect of voltage derating on the leakage current  
is shown in the graph. This will also give a significant increase  
in the reliability for any application. See Section 3.1 for  
details.  
and ESR.  
At 100kHz, impedance and ESR behave identically and  
decrease with increasing temperature as the typical curves  
show.  
ESR vs. TEMPERATURE  
1
LEAKAGE CURRENT vs. RATED VOLTAGE  
1
0.1  
Leakage Current  
Typical  
ratio I/IV  
R
0.1  
Range  
0.01  
-55 -40 -20  
0
20 40 60 80 10  
125  
Temperature (°C)  
1.5 D.C. LEAKAGE CURRENT  
0.01  
0
40  
Rated Voltage (V ) %  
80  
20  
60  
100  
1.5.1 Leakage current.  
R
The leakage current is dependent on the voltage applied,  
the elapsed time since the voltage was applied and the  
component temperature. It is measured at +20°C with the  
rated voltage applied. A protective resistance of 1000Ω  
is connected in series with the capacitor in the measuring  
circuit. Three to five minutes after application of the rated  
voltage the leakage current must not exceed the maximum  
values indicated in the ratings table. These are based on the  
formulae 0.01CV or 0.5µA (whichever is the greater).  
For additional information on Leakage Current, please  
consult the AVX technical publication "Analysis of Solid  
Tantalum Capacitor Leakage Current" by R. W. Franklin.  
1.5.4 Ripple current.  
The maximum ripple current allowed can be calculated from  
the power dissipation limits for a given temperature rise  
above ambient temperature (please refer to Section 2).  
Reforming of tantalum capacitors is unnecessary even after  
prolonged storage periods without the application of voltage.  
LEAKAGE CURRENT vs. BIAS VOLTAGE  
10  
1.5.2 Temperature dependence of the leakage  
current.  
8
The leakage current increases with higher temperatures,  
typical values are shown in the graph. For operation between  
85°C and 125°C, the maximum working voltage must be  
derated and can be found from the following formula.  
6
4
2
0
Vmax = 1- (T - 85) x VRvolts, where T is the required  
-2  
-4  
-6  
ͧ
ͨ
125  
operating temperature.  
-8  
LEAKAGE CURRENT vs. TEMPERATURE  
-10  
-20  
0
20  
40  
60  
80  
100  
Applied Voltage (Volts)  
10  
1
TAJD336M016  
TAJC685M020  
TAJD336M006  
TAJD476M010  
Leakage current  
ratio I/IR20  
0.1  
-55 -40 -20  
0
20 40 60 80 100 +125  
Temperature (°C)  
33  
Technical Summary and  
Application Guidelines  
SECTION 2  
A.C. OPERATION, RIPPLE VOLTAGE AND RIPPLE CURRENT  
Where P is the maximum permissible power dissipated as  
listed for the product under consideration (see tables).  
However care must be taken to ensure that:  
2.1 RIPPLE RATINGS (A.C.)  
In an a.c. application heat is generated within the capacitor  
by both the a.c. component of the signal (which will depend  
upon the signal form, amplitude and frequency), and by the  
d.c. leakage. For practical purposes the second factor is  
insignificant. The actual power dissipated in the capacitor is  
calculated using the formula:  
1. The d.c. working voltage of the capacitor must not be  
exceeded by the sum of the positive peak of the applied  
a.c. voltage and the d.c. bias voltage.  
2
2. The sum of the applied d.c. bias voltage and the negative  
peak of the a.c. voltage must not allow a voltage reversal  
in excess of the “Reverse Voltage”.  
P =  
I R  
P
and  
rearranged to I =  
( ⁄R) .....(Eq. 1)  
Z
2
and substituting  
P = E R  
2
Historical ripple calculations.  
where  
I = rms ripple current, amperes  
R = equivalent series resistance, ohms  
E = rms ripple voltage, volts  
P = power dissipated, watts  
Z = impedance, ohms, at frequency under  
consideration  
Previous ripple current and voltage values were calculated  
using an empirically derived power dissipation required to  
give a 10°C rise of the capacitors body temperature from  
room temperature, usually in free air. These values are shown  
in Table I. Equation 1 then allows the maximum ripple current  
to be established, and Equation 2, the maximum ripple  
voltage. But as has been shown in the AVX article on thermal  
management by I. Salisbury, the thermal conductivity of a  
Tantalum chip capacitor varies considerably depending upon  
how it is mounted.  
Maximum a.c. ripple voltage (Emax).  
From the previous equation:  
E max = Z  
P
( ⁄R) .....(Eq. 2)  
Table I: Power Dissipation Ratings (In Free Air)  
TAJ/TPS/CWR11  
TAZ/CWR09  
Series Molded Chip  
TAJ/TPS/CWR11  
TAZ/CWR09  
Series Molded Chip  
Series Molded Chip  
Temperature  
derating factors  
Case  
size  
Max. power  
dissipation (W)  
Case  
size  
Max. power  
dissipation (W)  
Temp. °C  
+25  
+55  
+85  
+125  
Factor  
1.0  
0.90  
0.80  
0.16  
A
B
C
D
E
M
N
R
S
T
0.075  
0.085  
0.110  
0.150  
0.165  
0.090  
0.130  
0.055  
0.065  
0.080  
0.250  
A
B
C
D
E
F
G
H
0.050  
0.070  
0.075  
0.080  
0.090  
0.100  
0.125  
0.150  
Temperature correction factor  
for ripple current  
Temp. °C  
+25  
Factor  
1.0  
V
+55  
+85  
+125  
0.95  
0.90  
0.40  
34  
Technical Summary and  
Application Guidelines  
A piece of equipment was designed which would pass sine  
and square wave currents of varying amplitudes through a  
biased capacitor. The temperature rise seen on the body for  
the capacitor was then measured using an infra-red probe.  
This ensured that there was no heat loss through any ther-  
mocouple attached to the capacitors surface.  
70  
60  
50  
40  
30  
20  
10  
0
100KHz  
1 MHz  
Results for the C, D and E case sizes  
100  
90  
0.00  
0.40  
0.60  
1.00  
0.20  
0.80  
1.20  
RMS current (Amps)  
80  
70  
2
If I R is then plotted it can be seen that the two lines are in  
fact coincident, as shown in figure below.  
C case  
60  
D case  
E case  
50  
40  
30  
70.00  
60.00  
50.00  
20  
10  
0
0
0.2  
Power (Watts)  
0.1  
0.3  
0.5  
0.4  
40.00  
100KHz  
1 MHz  
30.00  
Several capacitors were tested and the combined results are  
shown here. All these capacitors were measured on FR4  
board, with no other heatsinking. The ripple was supplied at  
various frequencies from 1KHz to 1MHz.  
20.00  
10.00  
0.00  
0.10 0.15 0.20 0.25  
FR  
0.35  
0.40  
0.45  
0.50  
0.05  
0.30  
0.00  
As can be seen in the figure above, the average Pmax value  
for the C case capacitors was 0.11 Watts. This is the same  
as that quoted in Table I.  
Example  
A Tantalum capacitor is being used in a filtering application,  
where it will be required to handle a 2 Amp peak-to-peak,  
200KHz square wave current.  
The D case capacitors gave an average Pmax value 0.125  
Watts. This is lower than the value quoted in the Table I by  
0.025 Watts.  
A square wave is the sum of an infinite series of sine waves  
at all the odd harmonics of the square waves fundamental  
frequency. The equation which relates is:  
The E case capacitors gave an average Pmax of 0.200 Watts  
which was much higher than the 0.165 Watts from Table I.  
If a typical capacitors ESR with frequency is considered, e.g.  
figure below, it can be seen that there is variation. Thus for a  
set ripple current, the amount of power to be dissipated by  
the capacitor will vary with frequency. This is clearly shown in  
figure in top of next column, which shows that the surface  
temperature of the unit rises less for a given value of ripple  
current at 1MHz than at 100KHz.  
ISquare = Ipksin (2πƒ) + Ipk sin (6πƒ) + Ipk sin (10πƒ) + Ipk sin (14πƒ) +...  
Thus the special components are:  
Frequency  
Peak-to-peak current  
(Amps)  
RMS current  
(Amps)  
200 KHz  
600 KHz  
1 MHz  
2.000  
0.667  
0.400  
0.286  
0.707  
0.236  
0.141  
0.101  
The graph below shows a typical ESR variation with fre-  
quency. Typical ripple current versus temperature rise for  
100KHz and 1MHz sine wave inputs.  
1.4 MHz  
Let us assume the capacitor is a TAJD686M006  
Typical ESR measurements would yield.  
ESR vs. FREQUENCY  
(TPSE107M016R0100)  
1
Frequency  
Typical ESR  
(Ohms)  
Power (Watts)  
2
Irms x ESR  
200 KHz  
600 KHz  
1 MHz  
0.120  
0.115  
0.090  
0.100  
0.060  
0.006  
0.002  
0.001  
1.4 MHz  
0.1  
Thus the total power dissipation would be 0.069 Watts.  
From the D case results shown in figure top of previous  
column, it can be seen that this power would cause the  
capacitors surface temperature to rise by about 5°C.  
For additional information, please refer to the AVX technical  
publication “Ripple Rating of Tantalum Chip Capacitors” by  
R.W. Franklin.  
0.01  
100  
1000  
10000  
100000  
1000000  
Frequency (Hz)  
35  
Technical Summary and  
Application Guidelines  
2.2 Thermal Management  
The heat generated inside a tantalum capacitor in a.c.  
operation comes from the power dissipation due to ripple  
current. It is equal to I R, where I is the rms value of the  
current at a given frequency, and R is the ESR at the same  
frequency with an additional contribution due to the leakage  
current. The heat will be transferred from the outer surface by  
conduction. How efficiently it is transferred from this point is  
dependent on the thermal management of the board.  
In practice, in a high density assembly with no specific  
thermal management, the power dissipation required to give  
a 10°C rise above ambient may be up to a factor of 10  
less. In these cases, the actual capacitor temperature should  
be established (either by thermocouple probe or infra-red  
scanner) and if it is seen to be above this limit it may  
be necessary to specify a lower ESR part or a higher  
voltage rating.  
2
The power dissipation ratings given in Section 2.1 are based  
on free-air calculations. These ratings can be approached if  
efficient heat sinking and/or forced cooling is used.  
Please contact application engineering for details or contact  
the AVX technical publication entitled “Thermal Management  
of Surface Mounted Tantalum Capacitors” by Ian Salisbury.  
Thermal Dissipation from the Mounted Chip  
ENCAPSULANT  
LEAD FRAME  
TANTALUM  
ANODE  
COPPER  
SOLDER  
PRINTED CIRCUIT BOARD  
Thermal Impedance Graph with Ripple Current  
THERMAL IMPEDANCE GRAPH  
C CASE SIZE CAPACITOR BODY  
TEMPERATURE DEG C  
140  
121 C\WATT  
120  
236 C\WATT  
100  
80  
73 C\WATT  
60  
X
40  
X
X
20  
X - RESULTS OF RIPPLE CURRENT TEST - RESIN BODY  
0
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4  
POWER IN UNIT CASE, DC WATTS  
= CAP IN FREE AIR  
= PCB MAX Cu THERMAL  
= PCB MIN Cu AIR GAP  
36  
Technical Summary and  
Application Guidelines  
SECTION 3  
RELIABILITY AND CALCULATION OF FAILURE RATE  
Figure 2. Correction factor to failure rate F for voltage  
derating of a typical component (60% con. level).  
3.1 STEADY-STATE  
Tantalum Dielectric has essentially no wear out mechanism  
and in certain circumstances is capable of limited self  
healing. However, random failures can occur in operation.  
The failure rate of Tantalum capacitors will decrease with time  
and not increase as with other electrolytic capacitors and  
other electronic components.  
1.0000  
0.1000  
0.0100  
Infant  
Mortalities  
0.0010  
0.0001  
0
0.9  
1
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8  
Applied Voltage / Rated Voltage  
Operating Temperature.  
Infinite Useful Life  
If the operating temperature is below the rated temperature  
for the capacitor then the operating reliability will be improved  
as shown in Figure 3. This graph gives a correction factor FT  
for any temperature of operation.  
Useful life reliability can be altered by voltage  
derating, temperature or series resistance  
Figure 1. Tantalum Reliability Curve  
Figure 3: Correction factor to failure rate F for ambient  
temperature T for typical component  
(60% con. level).  
The useful life reliability of the Tantalum capacitor is affected  
by three factors. The equation from which the failure rate can  
be calculated is:  
100.0  
F = FU x FT x FR x FB  
where FU is a correction factor due to operating  
voltage/voltage derating  
10.0  
1.0  
FT is a correction factor due to operating  
temperature  
FR is a correction factor due to circuit series  
resistance  
FB is the basic failure rate level. For standard  
Tantalum product this is 1ꢀ/1000 hours  
0.10  
0.01  
Base failure rate.  
20 30  
40  
50  
60  
70  
80 90  
110 120  
100  
Standard tantalum product conforms to Level M reliability  
(i.e., 1ꢀ/1000 hrs.) at rated voltage, rated temperature,  
and 0.1/volt circuit impedance. This is known as the  
base failure rate, FB, which is used for calculating operating  
reliability. The effect of varying the operating conditions on  
failure rate is shown on this page.  
Temperature  
Circuit Impedance.  
All solid tantalum capacitors require current limiting  
resistance to protect the dielectric from surges. A series  
resistor is recommended for this purpose. A lower circuit  
impedance may cause an increase in failure rate, especially  
at temperatures higher than 20°C. An inductive low imped-  
ance circuit may apply voltage surges to the capacitor and  
similarly a non-inductive circuit may apply current surges to  
the capacitor, causing localized over-heating and failure. The  
recommended impedance is 1 per volt. Where this is not  
feasible, equivalent voltage derating should be used  
(See MIL HANDBOOK 217E). The graph, Figure 4, shows  
the correction factor, FR, for increasing series resistance.  
Operating voltage/voltage derating.  
If a capacitor with a higher voltage rating than the maximum  
line voltage is used, then the operating reliability will be  
improved. This is known as voltage derating.  
The graph, Figure 2, shows the relationship between voltage  
derating (the ratio between applied and rated voltage) and  
the failure rate. The graph gives the correction factor FU for  
any operating voltage.  
37  
Technical Summary and  
Application Guidelines  
Figure 4. Correction factor to failure rate F for series resistance  
R on basic failure rate FB for a typical component  
(60% con. level).  
As can clearly be seen from the results of this experiment,  
the more derating applied by the user, the less likely the  
probability of a surge failure occurring.  
It must be remembered that these results were derived from  
a highly accelerated surge test machine, and failure rates in  
the low ppm are more likely with the end customer.  
Circuit resistance  
ohms/volt  
FR  
3.0  
2.0  
1.0  
0.8  
0.6  
0.4  
0.2  
0.1  
0.07  
0.1  
0.2  
0.3  
0.4  
0.6  
0.8  
1.0  
A commonly held misconception is that the leakage current  
of a Tantalum capacitor can predict the number of failures  
which will be seen on a surge screen. This can be disproved  
by the results of an experiment carried out at AVX on 47µF  
10V surface mount capacitors with different leakage  
currents. The results are summarized in the table below.  
Leakage current vs number of surge failures  
Example calculation  
Consider a 12 volt power line. The designer needs about  
10µF of capacitance to act as a decoupling capacitor near a  
video bandwidth amplifier. Thus the circuit impedance will be  
limited only by the output impedance of the boards power  
unit and the track resistance. Let us assume it to be about  
2 Ohms minimum, i.e. 0.167 Ohms/Volt. The operating  
temperature range is -25°C to +85°C. If a 10µF 16 Volt  
capacitor was designed in the operating failure rate would  
be as follows.  
Number tested Number failed surge  
Standard leakage range  
0.1 µA to 1µA  
10,000  
10,000  
10,000  
25  
26  
25  
Over Catalog limit  
5µA to 50µA  
Classified Short Circuit  
50µA to 500µA  
Again, it must be remembered that these results were  
derived from a highly accelerated surge test machine,  
and failure rates in the low ppm are more likely with the end  
customer.  
a) FT = 1.0 @ 85°C  
b) FR = 0.85 @ 0.167 Ohms/Volt  
c) FU = 0.08 @ applied voltage/rated  
voltage = 75ꢀ  
AVX recommended derating table  
Voltage Rail  
Working Cap Voltage  
Thus  
FB = 1.0 x 0.85 x 0.08 x 1 = 0.068ꢀ/1000 Hours  
3.3  
5
6.3  
If the capacitor was changed for a 20 volt capacitor, the  
operating failure rate will change as shown.  
10  
10  
12  
15  
24  
20  
FU = 0.018 @ applied voltage/rated voltage = 60ꢀ  
FB = 1.0 x 0.85 x 0.018 x 1 = 0.0153ꢀ/1000 Hours  
25  
35  
Series Combinations (11)  
3.2 Dynamic.  
For further details on surge in Tantalum capacitors refer  
to J.A. Gills paper “Surge in solid Tantalum capacitors”,  
available from AVX offices worldwide.  
As stated in Section 1.2.4, the solid Tantalum capacitor has  
a limited ability to withstand voltage and current surges.  
Such current surges can cause a capacitor to fail. The  
expected failure rate cannot be calculated by a simple  
formula as in the case of steady-state reliability. The two  
parameters under the control of the circuit design engineer  
known to reduce the incidence of failures are derating and  
series resistance.  
An added bonus of increasing the derating applied in a  
circuit, to improve the ability of the capacitor to withstand  
surge conditions, is that the steady-state reliability is  
improved by up to an order. Consider the example of a 6.3  
volt capacitor being used on a 5 volt rail.  
The table below summarizes the results of trials carried out  
at AVX with a piece of equipment which has very low series  
resistance with no voltage derating applied. That is the  
capacitor was tested at its rated voltage.  
The steady-state reliability of a Tantalum capacitor is affected  
by three parameters; temperature, series resistance and  
voltage derating. Assume 40°C operation and 0.1  
Ohms/Volt series resistance.  
Results of production scale derating experiment  
Capacitance  
and Voltage  
Number of  
units tested  
50% derating  
applied  
No derating  
applied  
47µF 16V  
100µF 10V  
22µF 25V  
1,547,587  
632,876  
0.03ꢀ  
0.01ꢀ  
0.05ꢀ  
1.1ꢀ  
0.5ꢀ  
0.3ꢀ  
2,256,258  
38  
Technical Summary and  
Application Guidelines  
If a 10 volt capacitor was used instead, the new scaling factor  
would be 0.006, thus the steady-state reliability would be:  
The capacitors reliability will therefore be:  
Failure rate = FU x FT x FR x 1ꢀ/1000 hours  
= 0.006 x 0.1 x 1 x 1ꢀ/1000 hours  
Failure rate = FU x FT x FR x 1ꢀ/1000 hours  
= 0.15 x 0.1 x 1 x 1ꢀ/1000 hours  
= 0.015ꢀ/1000 hours  
-4  
= 6 x 10 ꢀ/1000 hours  
SECTION 4  
APPLICATION GUIDELINES FOR TANTALUM CAPACITORS  
So there is an order improvement in the capacitors steady-  
state reliability.  
ture and is designed to ensure that the temperature of  
the internal construction of the capacitor does not exceed  
220°C. Preheat conditions vary according to the reflow  
system used, maximum time and temperature would be 10  
minutes at 150°C. Small parametric shifts may be noted  
immediately after reflow, components should be allowed to  
stabilize at room temperature prior to electrical testing.  
Soldering Conditions and Board Attachment.  
The soldering temperature and time should be the minimum  
for a good connection.  
A suitable combination for wavesoldering is 230 - 250°C for  
3 - 5 seconds.  
Both TAJ and TAZ series are designed for reflow and wave  
soldering operations. In addition TAZ is available with gold  
terminations compatible with conductive epoxy or gold wire  
bonding for hybrid assemblies.  
For vapor phase or infra-red reflow soldering the profile  
below shows allowable and dangerous time/temperature  
combinations. The profile refers to the peak reflow tempera-  
Allowable range of peak temp./time combination for wave soldering  
270  
Under the CECC 00 802  
International Specification, AVX  
Tantalum capacitors are  
Class A component.  
a
260  
Dangerous Range  
250  
Temperature 240  
o
(
C)  
230  
The capacitors can therefore  
be subjected to one IR reflow,  
one wave solder and one  
soldering iron cycle.  
Allowable Range  
with Care  
220  
210  
200  
Allowable Range  
with Preheat  
0
2
4
6
8
10  
12  
Soldering Time (secs.)  
If more aggressive mounting  
techniques are to be used  
please consult AVX Tantalum  
for guidance.  
Allowable range of peak temp./time combination for IR reflow  
260  
DANGEROUS RANGE  
250  
240  
ALLOWABLE  
RANGE WITH CARE  
230  
220  
RECOMMENDED RANGE  
210  
0
15  
30  
45  
60  
TIME IN SECONDS  
39  
Technical Summary and  
Application Guidelines  
SECTION 4  
APPLICATION GUIDELINES FOR TANTALUM CAPACITORS  
Recommended soldering profiles for surface mounting of tantalum capacitors is provided in figure below.  
IR REFLOW  
Recommended  
Ramp Rate Less  
than 2°C/sec.  
WAVE SOLDERING  
VAPOR PHASE  
After soldering the assembly should preferably be allowed to cool naturally. In the event that assisted cooling is used, the rate  
of change in temperature should not exceed that used in reflow.  
40  
Technical Summary and  
Application Guidelines  
SECTION 5  
MECHANICAL AND THERMAL PROPERTIES OF CAPACITORS  
D
C
z
5.1 Acceleration  
Y
B
2
98.1m/s (10g)  
x
5.2 Vibration Severity  
2
10 to 2000Hz, 0.75mm of 98.1m/s (10g)  
PW  
A
5.3 Shock  
2
Trapezoidal Pulse, 98.1m/s for 6ms.  
PL  
PS  
PSL  
5.4 Adhesion to Substrate  
IEC 384-3. minimum of 5N.  
Dimensions PS (Pad Separation) and PW (Pad Width) are  
calculated using dimensions x and z. Dimension y may  
vary, depending on whether reflow or wave soldering is to  
be performed.  
5.5 Resistance to Substrate Bending  
The component has compliant leads which reduces  
the risk of stress on the capacitor due to substrate  
bending.  
For reflow soldering, dimensions PL (Pad Length), PW (Pad  
Width), and PSL (Pad Set Length) have been calculated. For  
wave soldering the pad width (PWw) is reduced to less than  
the termination width to minimize the amount of solder pick  
up while ensuring that a good joint can be produced.  
5.6 Soldering Conditions  
Dip soldering is permissible provided the solder bath  
temperature is 270°C, the solder time < 3 seconds  
and the circuit board thickness 1.0mm.  
NOTE: These recommendations (also in compliance with EIA) are guidelines  
only. With care and control, smaller footprints may be considered for  
reflow soldering.  
5.7 Installation Instructions  
The upper temperature limit (maximum capacitor surface  
temperature) must not be exceeded even under the  
most unfavorable conditions when the capacitor is  
installed. This must be considered particularly when it  
is positioned near components which radiate heat  
strongly (e.g. valves and power transistors).  
Furthermore, care must be taken, when bending  
the wires, that the bending forces do not strain the  
capacitor housing.  
Nominal footprint and pad dimensions for each case size are  
given in the following tables:  
PAD DIMENSIONS: millimeters (inches)  
CASE  
TAJ  
PSL  
PL  
PS  
PW  
PWw  
A
B
C
D
V
E
R
S
T
4.0 (0.157) 1.4 (0.054) 1.2 (0.047) 1.8 (0.071) 0.9 (0.035)  
4.0 (0.157) 1.4 (0.054) 1.2 (0.047) 2.8 (0.110) 1.6 (0.063)  
6.5 (0.056) 2.0 (0.079) 2.5 (0.098) 2.8 (0.110) 1.6 (0.063)  
8.0 (0.315) 2.0 (0.079) 4.0 (0.157) 3.0 (0.119) 1.7 (0.068)  
8.3 (0.325) 2.3 (0.090) 3.7 (0.145) 6.2 (0.245) 1.7 (0.068)  
8.0 (0.315) 2.0 (0.079) 4.0 (0.157) 3.0 (0.119) 1.7 (0.068)  
2.7 (0.100) 1.0 (0.040) 1.0 (0.040) 1.6 (0.060) 0.8 (0.030)  
4.0 (0.160) 1.4 (0.050) 1.0 (0.040) 1.8 (0.070) 0.8 (0.030)  
4.0 (0.160) 1.4 (0.050) 1.0 (0.040) 2.8 (0.110) 0.8 (0.030)  
5.8 Installation Position  
No restriction.  
5.9 Soldering Instructions  
Fluxes containing acids must not be used.  
5.9.1 Guidelines for Surface Mount Footprints  
Component footprint and reflow pad design for AVX  
capacitors.  
The component footprint is defined as the maximum board  
area taken up by the terminators. The footprint dimensions  
are given by A, B, C and D in the diagram, which corre-  
sponds to W, max., A max., S min. and L max. for the com-  
ponent. The footprint is symmetric about the center lines.  
TAC  
TAZ  
L
2.4 (0.095) 0.7 (0.027) 0.9 (0.035) 1.0 (0.039)  
3.0 (0.120) 0.7 (0.027) 1.6 (0.063) 1.5 (0.059)  
-
-
R
A
B
D
E
F
3.3 (0.126) 1.4 (0.054) 0.5 (0.020) 2.5 (0.098) 1.0 (0.039)  
4.5 (0.178) 1.4 (0.054) 1.8 (0.070) 2.5 (0.098) 1.0 (0.039)  
4.5 (0.178) 1.4 (0.054) 1.8 (0.070) 3.6 (0.143) 2.0 (0.079)  
5.8 (0.228) 1.4 (0.054) 3.0 (0.120) 3.6 (0.143) 2.2 (0.085)  
6.3 (0.248) 1.4 (0.054) 3.6 (0.140) 4.5 (0.178) 3.0 (0.119)  
7.4 (0.293) 1.9 (0.074) 3.7 (0.145) 4.0 (0.157) 2.4 (0.095)  
8.0 (0.313) 1.9 (0.074) 4.2 (0.165) 5.0 (0.197) 3.4 (0.135)  
G
H
The dimensions x, y and z should be kept to a minimum  
to reduce rotational tendencies while allowing for visual  
inspection of the component and its solder fillet.  
SECTION 6  
EPOXY FLAMMABILITY  
SECTION 7  
QUALIFICATION APPROVAL STATUS  
EPOXY  
UL RATING  
OXYGEN INDEX  
DESCRIPTION  
STYLE  
SPECIFICATION  
TAJ  
TPS  
TAZ  
UL94 V-0  
UL94 V-0  
UL94 V-0  
35ꢀ  
35ꢀ  
35ꢀ  
Surface mount  
capacitors  
TAJ  
CECC 30801 - 005 Issue 2  
CECC 30801 - 011 Issue 1  
MIL-C-55365/8 (CWR11)  
TAZ  
MIL-C-55365/4 (CWR09)  
41  
TAC, TAJ & TPS Series  
Tape and Reel Packaging  
Tape and reel packaging for automatic component placement.  
Please enter required Suffix on order. Bulk product is not available.  
TAC, TAJ AND TPS TAPING SUFFIX TABLE  
Total Tape Thickness — K max  
TAC/TAJ/TPS  
Case Size Tape width  
P
mm  
103mm (4") reel  
180mm  
(7") reel  
330mm (13") reel  
reference  
mm  
Suffix Qty.  
Suffix  
Qty.  
A
8
4
4
8
8
8
8
4
4
4
4
4
R
R
R
R
R
R
R
R
R
R
R
2000  
2000  
500  
S
S
S
S
S
S
S
S
S
8000  
8000  
3000  
2500  
1500  
1500  
10000  
10000  
10000  
Case size  
reference  
K
Ao  
1.9  
3.1  
3.7  
4.8  
4.5  
6.4  
1.7  
1.9  
3.1  
1.1  
Bo  
3.5  
3.8  
6.9  
7.6  
7.5  
7.6  
2.5  
3.5  
3.8  
2.0  
B
8
12  
12  
12  
12  
8
A
B
C
D
E
V
R
S
T
2.3 (0.090)  
2.6 (0.102)  
3.3 (0.130)  
3.6 (0.142)  
4.8 (0.189)  
4.0 (0.156)  
1.9 (0.075)  
1.9 (0.075)  
1.9 (0.075)  
1.1 (0.043)  
C
D
500  
E
V
400  
400  
R
2500  
2500  
2500  
3500  
2500  
S
8
T
8
L
TACL  
TACR  
8
X
X
500  
500  
8
PLASTIC TAPE DIMENSIONS  
Standard Dimensions mm  
A: 9.5mm (8mm tape)  
Code  
8mm Tape  
12mm Tape  
4 0.1  
or  
(0.157 0.004) 4 0.1  
or  
(0.157 0.004)  
13.0mm (12mm tape)  
P*  
8 0.1  
(0.315 0.004) 8 0.1  
(0.315 0.004)  
Cover Tape Dimensions  
Thickness: 75 25µ  
Width of tape:  
5.5mm + 0.2mm (8mm tape)  
9.5mm + 0.2mm (12mm tape)  
G
F
0.75 min  
(0.03 min  
)
)
)
)
)
)
)
0.75 min  
5.5 0.05  
1.75 0.1  
12 0.3  
(0.03 min  
(0.22 0.002  
(0.069 0.004  
(0.472 0.012  
(0.079 0.002  
(0.157 0.004  
(0.059 0.004  
)
)
)
)
)
)
)
3.5 0.05 (0.138 0.002  
1.75 0.1 (0.069 0.004  
E
W
8 0.3  
2 0.05  
4 0.1  
(0.315 0.012  
(0.079 0.002  
(0.157 0.004  
(0.059 0.004  
P2  
2 0.05  
P0  
4 0.1  
D
1.5 0.1  
-0  
1.5 0.1  
(-0) -0  
(-0)  
D1  
1.0 min  
(0.039 min 1.5 min  
)
(0.059 min)  
*See taping suffix tables for actual P dimension (component pitch).  
P2  
D
P
P0  
TAPE SPECIFICATION  
Tape dimensions comply to EIA RS 481 A  
E
F
W
Dimensions A0 and B0 of the pocket and the tape thickness, K,  
are dependent on the component size.  
B0  
Tape materials do not affect component solderability during  
storage. Carrier Tape Thickness <0.4mm  
G
A0  
K
D1  
Positive Termination  
42  
TAJ & TPS Marking  
MARKING: TAJ SERIES  
For TAJ, the positive end of body has videcon readable  
polarity bar marking, with the AVX logo “A” as shown in the  
diagram. Bodies are marked by indelible laser marking on top  
surface with capacitance value, voltage and date of  
manufacture. Due to the small size of the A, B, S and T  
cases, a voltage code is used as shown to the right. R case  
is an exception in which only the voltage and capacitance  
values are printed.  
Voltage Code  
A, B, S and T Cases  
Rated Voltage  
at 85°C  
2
F
G
J
A
C
D
E
V
T
4
6.3  
10  
16  
20  
25  
35  
50  
POLARITY BAR INDICATES ANODE (+) TERMINATION  
R Case:  
1. Voltage  
2µ2  
2. Capacitance in µF  
6V  
A, B, S and T Case:  
1. Voltage Code  
(see table)  
A10µ  
9814  
2. Capacitance in µF  
3. Date Code  
C, D, E and V Case:  
1. Capacitance in µF  
A
2. Rated Voltage at 85°C  
3. Date Code  
68µ  
6.3  
9819  
43  
TAZ, CWR09, CWR11 Series  
Tape and Reel Packaging  
Solid Tantalum Chip TAZ Tape and reel packaging for automatic component placement.  
Please enter required Suffix on order. Bulk packaging is standard.  
TAZ TAPING SUFFIX TABLE  
Total Tape Thickness — K max  
TAZ  
Case Size  
reference  
Tape width  
mm  
P
mm  
7" (180mm) reel  
13" reel (330mm) reel  
Suffix  
Qty.  
Suffix  
Qty.  
Case size  
Millimeters (Inches)  
A
B
D
E
8
4
4
4
4
8
8
8
R
R
R
R
R
R
R
2500  
2500  
2500  
2500  
1000  
500  
S
9000  
reference  
DIM  
12  
12  
12  
12  
12  
12  
S
S
S
S
S
S
9000  
8000  
8000  
3000  
2500  
2500  
A
B
D
E
2.0 (0.079)  
4.0 (0.157)  
4.0 (0.157)  
4.0 (0.157)  
4.0 (0.157)  
4.0 (0.157)  
4.0 (0.157)  
F
F
G
H
G
H
500  
Code  
8mm Tape  
12mm Tape  
4 0.1  
or  
8 0.1  
(0.157 0.004) 4 0.1  
or  
(0.315 0.004) 8 0.1  
(0.157 0.004)  
P*  
(0.315 0.004)  
G
F
0.75 min  
(0.03 min  
)
)
)
)
)
)
)
0.75 min  
5.5 0.05  
1.75 0.1  
12 0.3  
2 0.05  
4 0.1  
(0.03 min  
(0.22 0.002  
(0.069 0.004  
(0.472 0.012  
(0.079 0.002  
(0.157 0.004  
(0.059 0.004  
)
)
)
)
)
)
)
3.5 0.05 (0.138 0.002  
1.75 0.1 (0.069 0.004  
E
W
8 0.3  
2 0.05  
4 0.1  
(0.315 0.012  
(0.079 0.002  
(0.157 0.004  
(0.059 0.004  
P2  
P0  
D
1.5 0.1  
-0  
1.5 0.1  
(-0) -0  
(-0)  
D
1
1.0 min  
(0.039 min 1.5 min  
)
(0.059 min)  
*See taping suffix tables for actual P dimension (component pitch).  
TAPE SPECIFICATION  
Tape dimensions comply to EIA RS 481 A  
Dimensions A0 and B0 of the pocket and  
the tape thickness, K, are dependent on  
the component size.  
Tape materials do not affect component  
solderability during storage.  
Carrier Tape Thickness <0.4mm  
44  
TAZ, CWR09, CWR11 Series  
Tape and Reel Packaging  
PLASTIC TAPE REEL DIMENSIONS  
13±0.5  
Standard Dimensions mm  
A: 9.5mm (8mm tape)  
13.0mm (12mm tape)  
Cover Tape Dimensions  
Thickness: 75 25µ  
Width of tape:  
5.5mm + 0.2mm (8mm tape)  
9.5mm + 0.2mm (12mm tape)  
2 ± 0.5  
A ± 1.0  
Waffle Packaging - 2" x 2" hard plastic waffle trays. To order Waffle  
packaging use a “W” in part numbers packaging position.  
Maximum  
Case Size  
Quantity  
Per Waffle  
TAZ A  
TAZ B  
160  
112  
88  
60  
48  
50  
28  
96  
72  
54  
28  
TAZ D  
TAZ E  
TAZ F  
TAZ G  
TAZ H  
CWR11 A  
CWR11 B  
CWR11 C  
CWR11 D  
NOTE: Orientation of parts in waffle packs  
varies by case size.  
45  
Questions & Answers  
Some commonly asked questions regarding Tantalum  
Capacitors:  
The two resistors are used to ensure that the leakage  
currents of the capacitors does not affect the circuit  
reliability, by ensuring that all the capacitors have half  
the working voltage across them.  
Question: If I use several tantalum capacitors in serial/parallel  
combinations, how can I ensure equal current and voltage  
sharing?  
Question: What are the advantages of tantalum over other  
capacitor technologies?  
Answer: Connecting two or more capacitors in series  
and parallel combinations allows almost any value  
and rating to be constructed for use in an application. For  
example, a capacitance of more than 60µF is required in a  
circuit for stable operation. The working voltage rail is 24  
volts dc with a superimposed ripple of 1.5 volts at 120 Hz.  
Answer:  
1. Tantalum capacitors have high volumetric efficiency.  
2. Electrical performance over temperature is very  
stable.  
3. They have a wide operating temperature range -55  
The maximum voltage seen by the capacitor is V  
dc  
ac  
+
degrees C to +125 degrees C.  
V
=25.5V  
4. They have better frequency characteristics than  
Applying the 50ꢀ derating rule tells us that a 50V  
capacitor is required.  
aluminum electrolytics.  
5. No wear out mechanism. Because of their construction,  
solid tantalum capacitors do not degrade in perfor-  
mance or reliability over time.  
Connecting two 25V rated capacitors in series will  
give the required capacitance voltage rating, but the  
Question: How does TPS differ from your standard  
product?  
33µF  
16.5µF  
25V  
Answer: TPS has been designed from the initial anode  
production stages for power supply applications. Special  
manufacturing processes provide the most robust capacitor  
dielectric by maximizing the volumetric efficiency of the  
package. After manufacturing, parts are conditioned by  
being subjected to elevated temperature overvoltage burn in  
applied for a minimum of two hours. Parts are monitored on  
a 100ꢀ basis for their direct current leakage performance at  
elevated temperatures. Parts are then subjected to a low  
impedance current surge. This current surge is performed on  
a 100ꢀ basis with each capacitor individually monitored.  
At this stage, the capacitor undergoes 100ꢀ test for  
capacitance, Dissipation Factor, leakage current, and  
100 KHz ESR to TPS requirements.  
50V  
33µF  
25V  
effective capacitance will be halved, so for greater than 60µF,  
four such series combinations are required, as shown.  
33µF  
25V  
66µF  
50V  
Question: If the part is rated as a 25 volt part and you have  
current surged it, why can’t I use it at 25 volts in a low  
impedance circuit?  
In order to ensure reliable operation, the capacitors should  
be connected as shown below to allow current sharing of  
the ac noise and ripple signals. This prevents any one  
capacitor heating more than its neighbors and thus being  
the weak link in the chain.  
Answer: The high volumetric efficiency obtained using  
tantalum technology is accomplished by using an extremely  
thin film of tantalum pentoxide as the dielectric. Even  
an application of the relatively low voltage of 25 volts will  
produce a large field strength as seen by the dielectric. As a  
result of this, derating has a significant impact on reliability as  
described under the reliability section. The following example  
uses a 22 microfarad capacitor rated at 25 volts to illustrate  
the point. The equation for determining the amount of  
surface area for a capacitor is as follows:  
100K  
100K  
100K  
46  
Questions & Answers  
C = ( (E) (E ) (A) ) / d  
°
Question: What negative transients can Solid Tantalum  
Capacitors operate under?  
A = ( (C) (d) ) /( (E )(E) )  
°
A = ( (22 x 10-6) (170 x 10-9) ) / ( (8.85 x 10-12) (27) )  
A = 0.015 square meters (150 square centimeters)  
Where  
Answer: The reverse voltage ratings are designed to cover  
exceptional conditions of small level excursions into incorrect  
polarity. The values quoted are not intended to cover contin-  
uous reverse operation. The peak reverse voltage applied to  
the capacitor must not exceed:  
C = Capacitance in farads  
2
10ꢀ of rated DC working voltage to a maximum  
of 1 volt at 25°C.  
A = Dielectric (Electrode) Surface Area (m )  
d = Dielectric thickness (Space between dielectric) (m)  
E = Dielectric constant (27 for tantalum)  
3ꢀ of rated DC working voltage to a maximum of  
0.5 volt at 85°C.  
E = Dielectric Constant relative to a vacuum  
°
1ꢀ of category DC working voltage to a maximum  
of 0.1 volt at 125°C.  
(8.855 x 10-12 Farads x m-1)  
To compute the field voltage potential felt by the dielectric we  
use the following logic.  
Question: I have read that manufacturers recommend a  
series resistance of 0.1 ohm per working volt. You suggest  
we use 1 ohm per volt in a low impedance circuit. Why?  
Dielectric formation potential = Formation Ratio x  
Working Voltage  
Answer: We are talking about two very different sets of  
circuit conditions for those recommendations. The 0.1 ohm  
per volt recommendation is for steady-state conditions. This  
level of resistance is used as a basis for the series resistance  
variable in a 1ꢀ / 1000 hours 60ꢀ confidence level  
reference. This is what steady-state life tests are based on.  
The 1 ohm per volt is recommended for dynamic conditions  
which include current in-rush applications such as inputs to  
power supply circuits. In many power supply topologies  
where the di/dt through the capacitor(s) is limited, (such  
as most implementations of buck (current mode), forward  
converter, and flyback), the requirement for series resistance  
is decreased.  
= 4 x 25  
Formation Potential = 100 volts  
Dielectric (Ta2O5) Thickness (d) is 1.7 x 10-9 Meters Per Volt  
d = 0.17 µ meters  
Electric Field Strength = Working Voltage / d  
= (25 / 0.17 µ meters)  
= 147 Kilovolts per  
millimeter  
= 147 Megavolts  
per meter  
Question: How long is the shelf life for a tantalum capacitor?  
No matter how pure the raw tantalum powder or the  
precision of processing, there will always be impurity sites in  
the dielectric. We attempt to stress these sites in the factory  
with overvoltage surges, and elevated temperature burn in  
so that components will fail in the factory and not in your  
product. Unfortunately, within this large area of tantalum  
pentoxide, impurity sites will exist in all capacitors.  
To minimize the possibility of providing enough activation  
energy for these impurity sites to turn from an amorphous  
state to a crystalline state that will conduct energy, series  
resistance and derating is recommended. By reducing the  
electric field within the anode at these sites, the tantalum  
capacitor has increased reliability. Tantalums differ from  
other electrolytics in that charge transients are carried by  
electronic conduction rather than absorption of ions.  
Answer: Solid tantalum capacitors have no limitation on  
shelf life. The dielectric is stable and no reformation is  
required. The only factors that affect future performance of  
the capacitors would be high humidity conditions and  
extreme storage temperatures. Solderability of solder coated  
surfaces may be affected by storage in excess of one year  
under temperatures greater than 40°C or humidities greater  
than 80ꢀ relative humidity. Terminations should be checked  
for solderability in the event an oxidation develops on the  
solder plating.  
Question: Do you recommend the use of tantalum capacitors  
on the input side of DC-DC converters?  
Answer: No. Typically the input side of a converter is fed  
from the voltage sources which are not regulated and are of  
nominally low impedance. Examples would be Nickel-Metal-  
Hydride batteries, Nickel-Cadmium batteries, etc., whose  
internal resistance is typically in the low milliohm range.  
47  
Technical Publications  
1. Steve Warden and John Gill, “Application Guidelines  
on IR Reflow of Surface Mount Solid Tantalum  
Capacitors.”  
15. R.W. Franklin, “Equivalent Series Resistance of  
Tantalum Capacitors,” AVX Ltd.  
16. John Stroud, “Molded Surface Mount Tantalum  
Capacitors vs Conformally Coated Capacitors,”  
AVX Corporation, Tantalum Division  
2. John Gill, “Glossary of Terms used in the Tantalum  
Industry.”  
3. R.W. Franklin, “Over-Heating in Failed Tantalum  
Capacitors,” AVX Ltd.  
17. Chris Reynolds, “Reliability Management of Tantalum  
Capacitors,” AVX Tantalum Corporation  
4. R.W. Franklin, “Upgraded Surge Performance of  
Tantalum Capacitors,” Electronic Engineering 1985  
18. R.W. Franklin, “Ripple Rating of Tantalum Chip  
Capacitors,” AVX Ltd.  
5. R.W. Franklin, “Screening beats surge threat,”  
Electronics Manufacture & Test, June 1985  
19. Chris Reynolds, “Setting Standard Sizes for Tantalum  
Chips,” AVX Corporation  
6. AVX Surface Mounting Guide  
20. John Gill, “Surge In Solid Tantalum Capacitors,”  
AVX Ltd.  
7. Ian Salisbury, “Thermal Management of Surface  
Mounted Tantalum Capacitors,” AVX  
21. David Mattingly, “Increasing Reliability of SMD  
Tantalum Capacitors in Low Impedance Applications,”  
AVX Corporation  
8. John Gill, “Investigation into the Effects of Connecting  
Tantalum Capacitors in Series,” AVX  
22. John Gill, “Basic Tantalum Technology,” AVX Ltd.  
9. Ian Salisbury, “Analysis of Fusing Technology for  
Tantalum Capacitors,” AVX-Kyocera Group Company  
23. Ian Salisbury, “Solder Update Reflow Mounting  
TACmicrochip Tantalum Capacitor,” AVX Ltd.  
10. R.W. Franklin, “Analysis of Solid Tantalum Capacitor  
Leakage Current,” AVX Ltd.  
24. Ian Salisbury, New Tantalum Capacitor Design for  
0603 Size,” AVX Ltd.  
11. R.W. Franklin, “An Exploration of Leakage Current,”  
AVX, Ltd.  
25. John Gill, “Capacitor Technology Comparison,”  
AVX Ltd.  
12. William A. Millman, “Application Specific SMD  
Tantalum Capacitors,” Technical Operations, AVX Ltd.  
26. Scott Chiang, “High Performance CPU Capacitor  
Requirements, how AVX can help,” AVX Kyocera  
Taiwan  
13. R.W. Franklin, “Capacitance Tolerances for Solid  
Tantalum Capacitors,” AVX Ltd.  
27. John Gill and Ian Bishop, "Reverse Voltage Behavior  
of Solid Tantalum Capacitors."  
14. Arch G. Martin, “Decoupling Basics,” AVX Corporation  
As the worlds broadest line molded tantalum chip supplier, it is our  
mission to provide First In Class Technology, Quality and Service,  
by establishing progressive design, manufacturing and continuous  
improvement programs driving toward a single goal:  
Total Customer Satisfaction.  
Please contact AVX for application engineering assistance.  
NOTICE: Specifications are subject to change without notice. Contact your nearest AVX Sales Office for the latest specifications. All statements, information and  
data given herein are believed to be accurate and reliable, but are presented without guarantee, warranty, or responsibility of any kind, expressed or implied.  
Statements or suggestions concerning possible use of our products are made without representation or warranty that any such use is free of patent infringement and  
are not recommendations to infringe any patent. The user should not assume that all safety measures are indicated or that other measures may not be required.  
Specifications are typical and may not apply to all applications.  
48  
Fax Back  
For further information and sample availability.  
AVX USA:  
843-626-5186  
Name:  
Company:  
Address:  
AVX EUROPE: ++44-1252-770004  
AVX ASIA:  
++65-3504-880  
Zip Code:  
Tel. No:  
Fax No:  
Project launch date:  
ٗ
ٗ
ٗ
ٗ
0-3mths  
3-6mths  
6-12mths  
Ͼ12mths  
Circuit Application:  
ٗ
ٗ
ٗ
ٗ
ٗ
Decoupling  
Timing  
Filtering  
DC Blocking  
Other  
Market Sector:  
ٗ
ٗ
ٗ
ٗ
ٗ
ٗ
Telecoms  
ٗ
Auto  
ٗ
PC  
Storage  
Power Supply  
Industrial  
Cellular  
Other  
Please rank your critical design factors between 1-6 (1 most critical)  
ٗ
ٗ
ٗ
ٗ
ٗ
ٗ
Size  
Max  
Capacitance  
Impedance  
Temperature  
Stability  
Leakage  
Current  
Height  
Please specify any CV ratings required outside of current matrix:  
What other SMD products are used in this project:  
ٗ
ٗ
ٗ
ٗ
ٗ
ٗ
Ceramic  
Aluminum  
Film  
Chip Arrays  
Conductive  
Polymer  
Os-con  
Please specify any non standard special requirements:  
ٗ
ٗ
ٗ
ٗ
ٗ
Non Std Cap  
Low ESR  
Temp  
Cap Tolerance  
Interest in specials shown overleaf  
of Short Form Catalog  
Forecast usage of Tantalum:  
Standard SMD Tantalum  
TACmicrochip  
1998  
1999  
2000  
Favored Supplier, Please rank 1-5 (1 most favorable):  
ٗ
ٗ
ٗ
ٗ
ٗ
ٗ
AVX  
Hitachi  
Kemet  
NEC  
Sprague  
Other  
Other engineers in your company who would like information:  
Please specify sample requirements:  
CAPACITANCE  
VOLTAGE  
49  
USA  
EUROPE  
ASIA-PACIFIC  
AVX Myrtle Beach, SC  
Corporate Offices  
AVX Limited, England  
European Headquarters  
AVX/Kyocera, Singapore  
Asia-Pacific Headquarters  
Tel: 843-448-9411  
FAX: 843-448-1943  
Tel: ++44 (0)1252 770000  
FAX: ++44 (0)1252 770001  
Tel: (65) 258-2833  
FAX: (65) 350-4880  
AVX Northwest, WA  
AVX S.A., France  
AVX/Kyocera, Hong Kong  
Tel: 360-669-8746  
FAX: 360-699-8751  
Tel: ++33 (1) 69.18.46.00  
FAX: ++33 (1) 69.28.73.87  
Tel: (852) 2-363-3303  
FAX: (852) 2-765-8185  
AVX North Central, IN  
AVX GmbH, Germany - AVX  
AVX/Kyocera, Korea  
Tel: 317-848-7153  
FAX: 317-844-9314  
Tel: ++49 (0) 8131 9004-0  
FAX: ++49 (0) 8131 9004-44  
Tel: (82) 2-785-6504  
FAX: (82) 2-784-5411  
AVX Northeast, MA  
AVX GmbH, Germany - Elco  
AVX/Kyocera, Taiwan  
Tel: 508-485-8114  
FAX: 508-485-8471  
Tel: ++49 (0) 2741 2990  
FAX: ++49 (0) 2741 299133  
Tel: (886) 2-2516-7010  
FAX: (886) 2-2506-9774  
AVX Mid-Pacific, CA  
AVX srl, Italy  
AVX/Kyocera, China  
Tel: 408-436-5400  
FAX: 408-437-1500  
Tel: ++390 (0)2 614571  
FAX: ++390 (0)2 614 2576  
Tel: (86) 21-6249-0314-16  
FAX: (86) 21-6249-0313  
AVX Southwest, AZ  
AVX sro, Czech Republic  
AVX/Kyocera, Malaysia  
Tel: 602-539-1496  
FAX: 602-539-1501  
Tel: ++420 (0)467 558340  
FAX: ++420 (0)467 558345  
Tel: (60) 4-228-1190  
FAX: (60) 4-228-1196  
Elco, Japan  
AVX South Central, TX  
Tel: 045-943-2906/7  
FAX: 045-943-2910  
Tel: 972-669-1223  
FAX: 972-669-2090  
Kyocera, Japan - AVX  
Tel: (81) 75-604-3426  
FAX: (81) 75-604-3425  
AVX Southeast, NC  
Tel: 919-878-6357  
FAX: 919-878-6462  
Kyocera, Japan - KDP  
Tel: (81) 75-604-3424  
FAX: (81) 75-604-3425  
AVX Canada  
Tel: 905-564-8959  
FAX: 905-564-9728  
Contact:  
A KYOCERA GROUP COMPANY  
http://www.avxcorp.com  
S-TSMT10M599-R  

相关型号:

TAJC226016

Surface Mount Tantalum Capacitors

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
KYOCERA AVX

TAJC226016NJ

TAJ Series Standard Tantalum

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
KYOCERA AVX

TAJC226020NJ

Standard Tantalum

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
KYOCERA AVX

TAJC226K006AFJ

CECC Tantalum Chip Capacitor

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
KYOCERA AVX

TAJC226K006ANJ

Standard Tantalum Capacitors

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
KYOCERA AVX

TAJC226K006ANJV

Standard Tantalum Capacitors

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
KYOCERA AVX

TAJC226K006AY

CECC Tantalum Chip Capacitor

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
KYOCERA AVX

TAJC226K006BFJ

CECC Tantalum Chip Capacitor

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
KYOCERA AVX

TAJC226K006BNJ

Standard Tantalum Capacitors

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
KYOCERA AVX

TAJC226K006BNJV

Standard Tantalum Capacitors

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
KYOCERA AVX

TAJC226K006BY

CECC Tantalum Chip Capacitor

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
KYOCERA AVX

TAJC226K006HFJ

CECC Tantalum Chip Capacitor

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
KYOCERA AVX